Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1397 Structured version   Unicode version

Theorem bnj1397 29096
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1397.1  |-  ( ph  ->  E. x ps )
bnj1397.2  |-  ( ps 
->  A. x ps )
Assertion
Ref Expression
bnj1397  |-  ( ph  ->  ps )

Proof of Theorem bnj1397
StepHypRef Expression
1 bnj1397.1 . 2  |-  ( ph  ->  E. x ps )
2 bnj1397.2 . . 3  |-  ( ps 
->  A. x ps )
3219.9h 1915 . 2  |-  ( E. x ps  <->  ps )
41, 3sylib 196 1  |-  ( ph  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1401   E.wex 1631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-10 1859  ax-12 1876
This theorem depends on definitions:  df-bi 185  df-ex 1632  df-nf 1636
This theorem is referenced by:  bnj1398  29293  bnj1408  29295  bnj1450  29309  bnj1501  29326
  Copyright terms: Public domain W3C validator