Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1321 Structured version   Unicode version

Theorem bnj1321 33171
Description: Technical lemma for bnj60 33206. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1321.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1321.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1321.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1321.4  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
Assertion
Ref Expression
bnj1321  |-  ( ( R  FrSe  A  /\  E. f ta )  ->  E! f ta )
Distinct variable groups:    A, d,
f, x    B, f    G, d, f    R, d, f, x
Allowed substitution hints:    ta( x, f, d)    B( x, d)    C( x, f, d)    G( x)    Y( x, f, d)

Proof of Theorem bnj1321
Dummy variables  g 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 461 . 2  |-  ( ( R  FrSe  A  /\  E. f ta )  ->  E. f ta )
2 simp1 996 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  R  FrSe  A )
3 bnj1321.4 . . . . . . . . 9  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
43simplbi 460 . . . . . . . 8  |-  ( ta 
->  f  e.  C
)
543ad2ant2 1018 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  f  e.  C )
6 bnj1321.3 . . . . . . . . . . . . 13  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
7 nfab1 2631 . . . . . . . . . . . . 13  |-  F/_ f { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
86, 7nfcxfr 2627 . . . . . . . . . . . 12  |-  F/_ f C
98nfcri 2622 . . . . . . . . . . 11  |-  F/ f  g  e.  C
10 nfv 1683 . . . . . . . . . . 11  |-  F/ f dom  g  =  ( { x }  u.  trCl ( x ,  A ,  R ) )
119, 10nfan 1875 . . . . . . . . . 10  |-  F/ f ( g  e.  C  /\  dom  g  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
12 eleq1 2539 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
f  e.  C  <->  g  e.  C ) )
13 dmeq 5202 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  dom  f  =  dom  g )
1413eqeq1d 2469 . . . . . . . . . . . 12  |-  ( f  =  g  ->  ( dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) )  <->  dom  g  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
1512, 14anbi12d 710 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )  <-> 
( g  e.  C  /\  dom  g  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) ) )
163, 15syl5bb 257 . . . . . . . . . 10  |-  ( f  =  g  ->  ( ta 
<->  ( g  e.  C  /\  dom  g  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) ) )
1711, 16sbie 2123 . . . . . . . . 9  |-  ( [ g  /  f ] ta  <->  ( g  e.  C  /\  dom  g  =  ( { x }  u.  trCl ( x ,  A ,  R
) ) ) )
1817simplbi 460 . . . . . . . 8  |-  ( [ g  /  f ] ta  ->  g  e.  C )
19183ad2ant3 1019 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  g  e.  C )
20 bnj1321.1 . . . . . . . 8  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
21 bnj1321.2 . . . . . . . 8  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
22 eqid 2467 . . . . . . . 8  |-  ( dom  f  i^i  dom  g
)  =  ( dom  f  i^i  dom  g
)
2320, 21, 6, 22bnj1326 33170 . . . . . . 7  |-  ( ( R  FrSe  A  /\  f  e.  C  /\  g  e.  C )  ->  ( f  |`  ( dom  f  i^i  dom  g
) )  =  ( g  |`  ( dom  f  i^i  dom  g )
) )
242, 5, 19, 23syl3anc 1228 . . . . . 6  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  ( f  |`  ( dom  f  i^i  dom  g
) )  =  ( g  |`  ( dom  f  i^i  dom  g )
) )
253simprbi 464 . . . . . . . . . 10  |-  ( ta 
->  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
26253ad2ant2 1018 . . . . . . . . 9  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
2717simprbi 464 . . . . . . . . . 10  |-  ( [ g  /  f ] ta  ->  dom  g  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
28273ad2ant3 1019 . . . . . . . . 9  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  dom  g  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
2926, 28eqtr4d 2511 . . . . . . . 8  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  dom  f  =  dom  g )
30 bnj1322 32969 . . . . . . . . 9  |-  ( dom  f  =  dom  g  ->  ( dom  f  i^i 
dom  g )  =  dom  f )
3130reseq2d 5272 . . . . . . . 8  |-  ( dom  f  =  dom  g  ->  ( f  |`  ( dom  f  i^i  dom  g
) )  =  ( f  |`  dom  f ) )
3229, 31syl 16 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  ( f  |`  ( dom  f  i^i  dom  g
) )  =  ( f  |`  dom  f ) )
33 releq 5084 . . . . . . . . 9  |-  ( z  =  f  ->  ( Rel  z  <->  Rel  f ) )
3420, 21, 6bnj66 33006 . . . . . . . . 9  |-  ( z  e.  C  ->  Rel  z )
3533, 34vtoclga 3177 . . . . . . . 8  |-  ( f  e.  C  ->  Rel  f )
36 resdm 5314 . . . . . . . 8  |-  ( Rel  f  ->  ( f  |` 
dom  f )  =  f )
375, 35, 363syl 20 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  ( f  |`  dom  f
)  =  f )
3832, 37eqtrd 2508 . . . . . 6  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  ( f  |`  ( dom  f  i^i  dom  g
) )  =  f )
39 eqeq2 2482 . . . . . . . . . 10  |-  ( dom  f  =  dom  g  ->  ( ( dom  f  i^i  dom  g )  =  dom  f  <->  ( dom  f  i^i  dom  g )  =  dom  g ) )
4030, 39mpbid 210 . . . . . . . . 9  |-  ( dom  f  =  dom  g  ->  ( dom  f  i^i 
dom  g )  =  dom  g )
4140reseq2d 5272 . . . . . . . 8  |-  ( dom  f  =  dom  g  ->  ( g  |`  ( dom  f  i^i  dom  g
) )  =  ( g  |`  dom  g ) )
4229, 41syl 16 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  ( g  |`  ( dom  f  i^i  dom  g
) )  =  ( g  |`  dom  g ) )
4320, 21, 6bnj66 33006 . . . . . . . 8  |-  ( g  e.  C  ->  Rel  g )
44 resdm 5314 . . . . . . . 8  |-  ( Rel  g  ->  ( g  |` 
dom  g )  =  g )
4519, 43, 443syl 20 . . . . . . 7  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  ( g  |`  dom  g
)  =  g )
4642, 45eqtrd 2508 . . . . . 6  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  ( g  |`  ( dom  f  i^i  dom  g
) )  =  g )
4724, 38, 463eqtr3d 2516 . . . . 5  |-  ( ( R  FrSe  A  /\  ta  /\  [ g  / 
f ] ta )  ->  f  =  g )
48473expib 1199 . . . 4  |-  ( R 
FrSe  A  ->  ( ( ta  /\  [ g  /  f ] ta )  ->  f  =  g ) )
4948alrimivv 1696 . . 3  |-  ( R 
FrSe  A  ->  A. f A. g ( ( ta 
/\  [ g  / 
f ] ta )  ->  f  =  g ) )
5049adantr 465 . 2  |-  ( ( R  FrSe  A  /\  E. f ta )  ->  A. f A. g ( ( ta  /\  [
g  /  f ] ta )  ->  f  =  g ) )
51 nfv 1683 . . 3  |-  F/ g ta
5251eu2 2324 . 2  |-  ( E! f ta  <->  ( E. f ta  /\  A. f A. g ( ( ta 
/\  [ g  / 
f ] ta )  ->  f  =  g ) ) )
531, 50, 52sylanbrc 664 1  |-  ( ( R  FrSe  A  /\  E. f ta )  ->  E! f ta )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379   E.wex 1596   [wsb 1711    e. wcel 1767   E!weu 2275   {cab 2452   A.wral 2814   E.wrex 2815    u. cun 3474    i^i cin 3475    C_ wss 3476   {csn 4027   <.cop 4033   dom cdm 4999    |` cres 5001   Rel wrel 5004    Fn wfn 5582   ` cfv 5587    predc-bnj14 32829    FrSe w-bnj15 32833    trClc-bnj18 32835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-reg 8017  ax-inf2 8057
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-om 6680  df-1o 7130  df-bnj17 32828  df-bnj14 32830  df-bnj13 32832  df-bnj15 32834  df-bnj18 32836  df-bnj19 32838
This theorem is referenced by:  bnj1489  33200
  Copyright terms: Public domain W3C validator