Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1316 Structured version   Unicode version

Theorem bnj1316 33607
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1316.1
bnj1316.2
Assertion
Ref Expression
bnj1316
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()   (,)

Proof of Theorem bnj1316
StepHypRef Expression
1 bnj1316.1 . . . . 5
21nfcii 2595 . . . 4
3 bnj1316.2 . . . . 5
43nfcii 2595 . . . 4
52, 4nfeq 2616 . . 3
65nfri 1860 . 2
76bnj956 33563 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  wal 1381   wceq 1383   wcel 1804  ciun 4315 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-rex 2799  df-iun 4317 This theorem is referenced by:  bnj1000  33727  bnj1318  33809
 Copyright terms: Public domain W3C validator