Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1312 Structured version   Unicode version

Theorem bnj1312 33549
Description: Technical lemma for bnj60 33553. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1312.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1312.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1312.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1312.4  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
bnj1312.5  |-  D  =  { x  e.  A  |  -.  E. f ta }
bnj1312.6  |-  ( ps  <->  ( R  FrSe  A  /\  D  =/=  (/) ) )
bnj1312.7  |-  ( ch  <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )
bnj1312.8  |-  ( ta'  <->  [. y  /  x ]. ta )
bnj1312.9  |-  H  =  { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
bnj1312.10  |-  P  = 
U. H
bnj1312.11  |-  Z  = 
<. x ,  ( P  |`  pred ( x ,  A ,  R ) ) >.
bnj1312.12  |-  Q  =  ( P  u.  { <. x ,  ( G `
 Z ) >. } )
bnj1312.13  |-  W  = 
<. z ,  ( Q  |`  pred ( z ,  A ,  R ) ) >.
bnj1312.14  |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R ) )
Assertion
Ref Expression
bnj1312  |-  ( R 
FrSe  A  ->  A. x  e.  A  E. f  e.  C  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
Distinct variable groups:    A, d,
f, x, y, z    B, f    y, C    y, D    E, d, f, y, z    G, d, f, x, y, z    z, Q    R, d, f, x, y, z    z, Y    ch, z    ps, y    ta, y
Allowed substitution hints:    ps( x, z, f, d)    ch( x, y, f, d)    ta( x, z, f, d)    B( x, y, z, d)    C( x, z, f, d)    D( x, z, f, d)    P( x, y, z, f, d)    Q( x, y, f, d)    E( x)    H( x, y, z, f, d)    W( x, y, z, f, d)    Y( x, y, f, d)    Z( x, y, z, f, d)    ta'( x, y, z, f, d)

Proof of Theorem bnj1312
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 bnj1312.5 . . 3  |-  D  =  { x  e.  A  |  -.  E. f ta }
2 bnj1312.6 . . . 4  |-  ( ps  <->  ( R  FrSe  A  /\  D  =/=  (/) ) )
32simplbi 460 . . . . . . 7  |-  ( ps 
->  R  FrSe  A )
41bnj21 33206 . . . . . . . 8  |-  D  C_  A
54a1i 11 . . . . . . 7  |-  ( ps 
->  D  C_  A )
62simprbi 464 . . . . . . 7  |-  ( ps 
->  D  =/=  (/) )
71bnj1230 33296 . . . . . . . 8  |-  ( w  e.  D  ->  A. x  w  e.  D )
87bnj1228 33502 . . . . . . 7  |-  ( ( R  FrSe  A  /\  D  C_  A  /\  D  =/=  (/) )  ->  E. x  e.  D  A. y  e.  D  -.  y R x )
93, 5, 6, 8syl3anc 1228 . . . . . 6  |-  ( ps 
->  E. x  e.  D  A. y  e.  D  -.  y R x )
10 bnj1312.7 . . . . . 6  |-  ( ch  <->  ( ps  /\  x  e.  D  /\  A. y  e.  D  -.  y R x ) )
11 nfv 1683 . . . . . . . . 9  |-  F/ x  R  FrSe  A
127nfcii 2619 . . . . . . . . . 10  |-  F/_ x D
13 nfcv 2629 . . . . . . . . . 10  |-  F/_ x (/)
1412, 13nfne 2798 . . . . . . . . 9  |-  F/ x  D  =/=  (/)
1511, 14nfan 1875 . . . . . . . 8  |-  F/ x
( R  FrSe  A  /\  D  =/=  (/) )
162, 15nfxfr 1625 . . . . . . 7  |-  F/ x ps
1716nfri 1822 . . . . . 6  |-  ( ps 
->  A. x ps )
189, 10, 17bnj1521 33344 . . . . 5  |-  ( ps 
->  E. x ch )
1910simp2bi 1012 . . . . 5  |-  ( ch 
->  x  e.  D
)
201bnj1538 33348 . . . . . 6  |-  ( x  e.  D  ->  -.  E. f ta )
21 bnj1312.1 . . . . . . . . 9  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
22 bnj1312.2 . . . . . . . . 9  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
23 bnj1312.3 . . . . . . . . 9  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
24 bnj1312.4 . . . . . . . . 9  |-  ( ta  <->  ( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
25 bnj1312.8 . . . . . . . . 9  |-  ( ta'  <->  [. y  /  x ]. ta )
26 bnj1312.9 . . . . . . . . 9  |-  H  =  { f  |  E. y  e.  pred  ( x ,  A ,  R
) ta' }
27 bnj1312.10 . . . . . . . . 9  |-  P  = 
U. H
28 bnj1312.11 . . . . . . . . 9  |-  Z  = 
<. x ,  ( P  |`  pred ( x ,  A ,  R ) ) >.
29 bnj1312.12 . . . . . . . . 9  |-  Q  =  ( P  u.  { <. x ,  ( G `
 Z ) >. } )
3021, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29bnj1489 33547 . . . . . . . 8  |-  ( ch 
->  Q  e.  _V )
31 bnj1312.13 . . . . . . . . . . 11  |-  W  = 
<. z ,  ( Q  |`  pred ( z ,  A ,  R ) ) >.
32 bnj1312.14 . . . . . . . . . . 11  |-  E  =  ( { x }  u.  trCl ( x ,  A ,  R ) )
3310, 3bnj835 33252 . . . . . . . . . . . . . 14  |-  ( ch 
->  R  FrSe  A )
3421, 22, 23, 24, 1, 2, 10, 25, 26, 27bnj1384 33523 . . . . . . . . . . . . . 14  |-  ( R 
FrSe  A  ->  Fun  P
)
3533, 34syl 16 . . . . . . . . . . . . 13  |-  ( ch 
->  Fun  P )
3621, 22, 23, 24, 1, 2, 10, 25, 26, 27bnj1415 33529 . . . . . . . . . . . . 13  |-  ( ch 
->  dom  P  =  trCl ( x ,  A ,  R ) )
3735, 36bnj1422 33331 . . . . . . . . . . . 12  |-  ( ch 
->  P  Fn  trCl (
x ,  A ,  R ) )
3821, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 36bnj1416 33530 . . . . . . . . . . . . . 14  |-  ( ch 
->  dom  Q  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
3921, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 35, 38, 36bnj1421 33533 . . . . . . . . . . . . 13  |-  ( ch 
->  Fun  Q )
4039, 38bnj1422 33331 . . . . . . . . . . . 12  |-  ( ch 
->  Q  Fn  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
4121, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 31, 32, 37, 40bnj1423 33542 . . . . . . . . . . 11  |-  ( ch 
->  A. z  e.  E  ( Q `  z )  =  ( G `  W ) )
4232fneq2i 5682 . . . . . . . . . . . 12  |-  ( Q  Fn  E  <->  Q  Fn  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
4340, 42sylibr 212 . . . . . . . . . . 11  |-  ( ch 
->  Q  Fn  E
)
4421, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 31, 32bnj1452 33543 . . . . . . . . . . 11  |-  ( ch 
->  E  e.  B
)
4521, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 31, 32, 30, 41, 43, 44bnj1463 33546 . . . . . . . . . 10  |-  ( ch 
->  Q  e.  C
)
4645, 38jca 532 . . . . . . . . 9  |-  ( ch 
->  ( Q  e.  C  /\  dom  Q  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
4721, 22, 23, 24, 1, 2, 10, 25, 26, 27, 28, 29, 46bnj1491 33548 . . . . . . . 8  |-  ( ( ch  /\  Q  e. 
_V )  ->  E. f
( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
4830, 47mpdan 668 . . . . . . 7  |-  ( ch 
->  E. f ( f  e.  C  /\  dom  f  =  ( {
x }  u.  trCl ( x ,  A ,  R ) ) ) )
4948, 24bnj1198 33289 . . . . . 6  |-  ( ch 
->  E. f ta )
5020, 49nsyl3 119 . . . . 5  |-  ( ch 
->  -.  x  e.  D
)
5118, 19, 50bnj1304 33313 . . . 4  |-  -.  ps
522, 51bnj1541 33349 . . 3  |-  ( R 
FrSe  A  ->  D  =  (/) )
531, 52bnj1476 33340 . 2  |-  ( R 
FrSe  A  ->  A. x  e.  A  E. f ta )
5424exbii 1644 . . . 4  |-  ( E. f ta  <->  E. f
( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
55 df-rex 2823 . . . 4  |-  ( E. f  e.  C  dom  f  =  ( {
x }  u.  trCl ( x ,  A ,  R ) )  <->  E. f
( f  e.  C  /\  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) ) )
5654, 55bitr4i 252 . . 3  |-  ( E. f ta  <->  E. f  e.  C  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
5756ralbii 2898 . 2  |-  ( A. x  e.  A  E. f ta  <->  A. x  e.  A  E. f  e.  C  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
5853, 57sylib 196 1  |-  ( R 
FrSe  A  ->  A. x  e.  A  E. f  e.  C  dom  f  =  ( { x }  u.  trCl ( x ,  A ,  R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   {cab 2452    =/= wne 2662   A.wral 2817   E.wrex 2818   {crab 2821   _Vcvv 3118   [.wsbc 3336    u. cun 3479    C_ wss 3481   (/)c0 3790   {csn 4033   <.cop 4039   U.cuni 4251   class class class wbr 4453   dom cdm 5005    |` cres 5007   Fun wfun 5588    Fn wfn 5589   ` cfv 5594    predc-bnj14 33176    FrSe w-bnj15 33180    trClc-bnj18 33182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-reg 8030  ax-inf2 8070
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-om 6696  df-1o 7142  df-bnj17 33175  df-bnj14 33177  df-bnj13 33179  df-bnj15 33181  df-bnj18 33183  df-bnj19 33185
This theorem is referenced by:  bnj1493  33550
  Copyright terms: Public domain W3C validator