Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1311 Structured version   Unicode version

Theorem bnj1311 34481
Description: Technical lemma for bnj60 34519. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1311.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1311.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1311.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1311.4  |-  D  =  ( dom  g  i^i 
dom  h )
Assertion
Ref Expression
bnj1311  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C )  ->  ( g  |`  D )  =  ( h  |`  D ) )
Distinct variable groups:    A, d,
f, x    B, f,
g    B, h, f    D, d, x    G, d, f, g    h, G, d    R, d, f, x    g, Y    h, Y    x, g    x, h
Allowed substitution hints:    A( g, h)    B( x, d)    C( x, f, g, h, d)    D( f, g, h)    R( g, h)    G( x)    Y( x, f, d)

Proof of Theorem bnj1311
Dummy variables  w  z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 236 . . . . . . . 8  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  <->  ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  (
h  |`  D ) ) )
21bnj1232 34263 . . . . . . 7  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  ->  R  FrSe  A )
3 ssrab2 3571 . . . . . . . 8  |-  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) }  C_  D
4 bnj1311.4 . . . . . . . . 9  |-  D  =  ( dom  g  i^i 
dom  h )
51bnj1235 34264 . . . . . . . . . . 11  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  -> 
g  e.  C )
6 bnj1311.2 . . . . . . . . . . . 12  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
7 bnj1311.3 . . . . . . . . . . . 12  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
8 eqid 2454 . . . . . . . . . . . 12  |-  <. x ,  ( g  |`  pred ( x ,  A ,  R ) ) >.  =  <. x ,  ( g  |`  pred ( x ,  A ,  R
) ) >.
9 eqid 2454 . . . . . . . . . . . 12  |-  { g  |  E. d  e.  B  ( g  Fn  d  /\  A. x  e.  d  ( g `  x )  =  ( G `  <. x ,  ( g  |`  pred ( x ,  A ,  R ) ) >.
) ) }  =  { g  |  E. d  e.  B  (
g  Fn  d  /\  A. x  e.  d  ( g `  x )  =  ( G `  <. x ,  ( g  |`  pred ( x ,  A ,  R ) ) >. ) ) }
106, 7, 8, 9bnj1234 34470 . . . . . . . . . . 11  |-  C  =  { g  |  E. d  e.  B  (
g  Fn  d  /\  A. x  e.  d  ( g `  x )  =  ( G `  <. x ,  ( g  |`  pred ( x ,  A ,  R ) ) >. ) ) }
115, 10syl6eleq 2552 . . . . . . . . . 10  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  -> 
g  e.  { g  |  E. d  e.  B  ( g  Fn  d  /\  A. x  e.  d  ( g `  x )  =  ( G `  <. x ,  ( g  |`  pred ( x ,  A ,  R ) ) >.
) ) } )
12 abid 2441 . . . . . . . . . . . . . 14  |-  ( g  e.  { g  |  E. d  e.  B  ( g  Fn  d  /\  A. x  e.  d  ( g `  x
)  =  ( G `
 <. x ,  ( g  |`  pred ( x ,  A ,  R
) ) >. )
) }  <->  E. d  e.  B  ( g  Fn  d  /\  A. x  e.  d  ( g `  x )  =  ( G `  <. x ,  ( g  |`  pred ( x ,  A ,  R ) ) >.
) ) )
1312bnj1238 34266 . . . . . . . . . . . . 13  |-  ( g  e.  { g  |  E. d  e.  B  ( g  Fn  d  /\  A. x  e.  d  ( g `  x
)  =  ( G `
 <. x ,  ( g  |`  pred ( x ,  A ,  R
) ) >. )
) }  ->  E. d  e.  B  g  Fn  d )
1413bnj1196 34254 . . . . . . . . . . . 12  |-  ( g  e.  { g  |  E. d  e.  B  ( g  Fn  d  /\  A. x  e.  d  ( g `  x
)  =  ( G `
 <. x ,  ( g  |`  pred ( x ,  A ,  R
) ) >. )
) }  ->  E. d
( d  e.  B  /\  g  Fn  d
) )
15 bnj1311.1 . . . . . . . . . . . . . . 15  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
1615abeq2i 2581 . . . . . . . . . . . . . 14  |-  ( d  e.  B  <->  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R
)  C_  d )
)
1716simplbi 458 . . . . . . . . . . . . 13  |-  ( d  e.  B  ->  d  C_  A )
18 fndm 5662 . . . . . . . . . . . . 13  |-  ( g  Fn  d  ->  dom  g  =  d )
1917, 18bnj1241 34267 . . . . . . . . . . . 12  |-  ( ( d  e.  B  /\  g  Fn  d )  ->  dom  g  C_  A
)
2014, 19bnj593 34203 . . . . . . . . . . 11  |-  ( g  e.  { g  |  E. d  e.  B  ( g  Fn  d  /\  A. x  e.  d  ( g `  x
)  =  ( G `
 <. x ,  ( g  |`  pred ( x ,  A ,  R
) ) >. )
) }  ->  E. d dom  g  C_  A )
2120bnj937 34231 . . . . . . . . . 10  |-  ( g  e.  { g  |  E. d  e.  B  ( g  Fn  d  /\  A. x  e.  d  ( g `  x
)  =  ( G `
 <. x ,  ( g  |`  pred ( x ,  A ,  R
) ) >. )
) }  ->  dom  g  C_  A )
22 ssinss1 3712 . . . . . . . . . 10  |-  ( dom  g  C_  A  ->  ( dom  g  i^i  dom  h )  C_  A
)
2311, 21, 223syl 20 . . . . . . . . 9  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  -> 
( dom  g  i^i  dom  h )  C_  A
)
244, 23syl5eqss 3533 . . . . . . . 8  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  ->  D  C_  A )
253, 24syl5ss 3500 . . . . . . 7  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  ->  { x  e.  D  |  ( g `  x )  =/=  (
h `  x ) }  C_  A )
26 eqid 2454 . . . . . . . 8  |-  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) }  =  {
x  e.  D  | 
( g `  x
)  =/=  ( h `
 x ) }
27 biid 236 . . . . . . . 8  |-  ( ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  /\  x  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) }  /\  A. y  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) }  -.  y R x )  <->  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  (
g  |`  D )  =/=  ( h  |`  D ) )  /\  x  e. 
{ x  e.  D  |  ( g `  x )  =/=  (
h `  x ) }  /\  A. y  e. 
{ x  e.  D  |  ( g `  x )  =/=  (
h `  x ) }  -.  y R x ) )
2815, 6, 7, 4, 26, 1, 27bnj1253 34474 . . . . . . 7  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  ->  { x  e.  D  |  ( g `  x )  =/=  (
h `  x ) }  =/=  (/) )
29 nfrab1 3035 . . . . . . . . 9  |-  F/_ x { x  e.  D  |  ( g `  x )  =/=  (
h `  x ) }
3029nfcrii 2608 . . . . . . . 8  |-  ( z  e.  { x  e.  D  |  ( g `
 x )  =/=  ( h `  x
) }  ->  A. x  z  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) } )
3130bnj1228 34468 . . . . . . 7  |-  ( ( R  FrSe  A  /\  { x  e.  D  | 
( g `  x
)  =/=  ( h `
 x ) } 
C_  A  /\  {
x  e.  D  | 
( g `  x
)  =/=  ( h `
 x ) }  =/=  (/) )  ->  E. x  e.  { x  e.  D  |  ( g `  x )  =/=  (
h `  x ) } A. y  e.  {
x  e.  D  | 
( g `  x
)  =/=  ( h `
 x ) }  -.  y R x )
322, 25, 28, 31syl3anc 1226 . . . . . 6  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  ->  E. x  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) } A. y  e.  { x  e.  D  |  ( g `  x )  =/=  (
h `  x ) }  -.  y R x )
33 ax-5 1709 . . . . . . 7  |-  ( R 
FrSe  A  ->  A. x  R  FrSe  A )
3415bnj1309 34479 . . . . . . . . 9  |-  ( w  e.  B  ->  A. x  w  e.  B )
357, 34bnj1307 34480 . . . . . . . 8  |-  ( w  e.  C  ->  A. x  w  e.  C )
3635hblem 2577 . . . . . . 7  |-  ( g  e.  C  ->  A. x  g  e.  C )
3735hblem 2577 . . . . . . 7  |-  ( h  e.  C  ->  A. x  h  e.  C )
38 ax-5 1709 . . . . . . 7  |-  ( ( g  |`  D )  =/=  ( h  |`  D )  ->  A. x ( g  |`  D )  =/=  (
h  |`  D ) )
3933, 36, 37, 38bnj982 34238 . . . . . 6  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  ->  A. x ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) ) )
4032, 27, 39bnj1521 34310 . . . . 5  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  ->  E. x ( ( R 
FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  (
g  |`  D )  =/=  ( h  |`  D ) )  /\  x  e. 
{ x  e.  D  |  ( g `  x )  =/=  (
h `  x ) }  /\  A. y  e. 
{ x  e.  D  |  ( g `  x )  =/=  (
h `  x ) }  -.  y R x ) )
41 simp2 995 . . . . 5  |-  ( ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  /\  x  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) }  /\  A. y  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) }  -.  y R x )  ->  x  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) } )
4215, 6, 7, 4, 26, 1, 27bnj1279 34475 . . . . . . . . 9  |-  ( ( x  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) }  /\  A. y  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) }  -.  y R x )  -> 
(  pred ( x ,  A ,  R )  i^i  { x  e.  D  |  ( g `
 x )  =/=  ( h `  x
) } )  =  (/) )
43423adant1 1012 . . . . . . . 8  |-  ( ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  /\  x  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) }  /\  A. y  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) }  -.  y R x )  -> 
(  pred ( x ,  A ,  R )  i^i  { x  e.  D  |  ( g `
 x )  =/=  ( h `  x
) } )  =  (/) )
4415, 6, 7, 4, 26, 1, 27, 43bnj1280 34477 . . . . . . 7  |-  ( ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  /\  x  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) }  /\  A. y  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) }  -.  y R x )  -> 
( g  |`  pred (
x ,  A ,  R ) )  =  ( h  |`  pred (
x ,  A ,  R ) ) )
45 eqid 2454 . . . . . . 7  |-  <. x ,  ( h  |`  pred ( x ,  A ,  R ) ) >.  =  <. x ,  ( h  |`  pred ( x ,  A ,  R
) ) >.
46 eqid 2454 . . . . . . 7  |-  { h  |  E. d  e.  B  ( h  Fn  d  /\  A. x  e.  d  ( h `  x
)  =  ( G `
 <. x ,  ( h  |`  pred ( x ,  A ,  R
) ) >. )
) }  =  {
h  |  E. d  e.  B  ( h  Fn  d  /\  A. x  e.  d  ( h `  x )  =  ( G `  <. x ,  ( h  |`  pred ( x ,  A ,  R ) ) >.
) ) }
4715, 6, 7, 4, 26, 1, 27, 44, 8, 9, 45, 46bnj1296 34478 . . . . . 6  |-  ( ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  /\  x  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) }  /\  A. y  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) }  -.  y R x )  -> 
( g `  x
)  =  ( h `
 x ) )
4826bnj1538 34314 . . . . . . 7  |-  ( x  e.  { x  e.  D  |  ( g `
 x )  =/=  ( h `  x
) }  ->  (
g `  x )  =/=  ( h `  x
) )
4948necon2bi 2691 . . . . . 6  |-  ( ( g `  x )  =  ( h `  x )  ->  -.  x  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) } )
5047, 49syl 16 . . . . 5  |-  ( ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  /\  x  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) }  /\  A. y  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) }  -.  y R x )  ->  -.  x  e.  { x  e.  D  |  (
g `  x )  =/=  ( h `  x
) } )
5140, 41, 50bnj1304 34279 . . . 4  |-  -.  ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  (
g  |`  D )  =/=  ( h  |`  D ) )
52 df-bnj17 34140 . . . 4  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) )  <->  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C )  /\  (
g  |`  D )  =/=  ( h  |`  D ) ) )
5351, 52mtbi 296 . . 3  |-  -.  (
( R  FrSe  A  /\  g  e.  C  /\  h  e.  C
)  /\  ( g  |`  D )  =/=  (
h  |`  D ) )
5453imnani 421 . 2  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C )  ->  -.  ( g  |`  D )  =/=  (
h  |`  D ) )
55 nne 2655 . 2  |-  ( -.  ( g  |`  D )  =/=  ( h  |`  D )  <->  ( g  |`  D )  =  ( h  |`  D )
)
5654, 55sylib 196 1  |-  ( ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C )  ->  ( g  |`  D )  =  ( h  |`  D ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   {cab 2439    =/= wne 2649   A.wral 2804   E.wrex 2805   {crab 2808    i^i cin 3460    C_ wss 3461   (/)c0 3783   <.cop 4022   class class class wbr 4439   dom cdm 4988    |` cres 4990    Fn wfn 5565   ` cfv 5570    /\ w-bnj17 34139    predc-bnj14 34141    FrSe w-bnj15 34145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-reg 8010  ax-inf2 8049
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-om 6674  df-1o 7122  df-bnj17 34140  df-bnj14 34142  df-bnj13 34144  df-bnj15 34146  df-bnj18 34148  df-bnj19 34150
This theorem is referenced by:  bnj1326  34483  bnj60  34519
  Copyright terms: Public domain W3C validator