Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1309 Structured version   Unicode version

Theorem bnj1309 33811
 Description: Technical lemma for bnj60 33851. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1309.1
Assertion
Ref Expression
bnj1309
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)   (,,)   (,,)

Proof of Theorem bnj1309
StepHypRef Expression
1 bnj1309.1 . 2
2 hbra1 2825 . . . 4
32bnj1352 33619 . . 3
43hbab 2433 . 2
51, 4hbxfreq 2565 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 369  wal 1381   wceq 1383   wcel 1804  cab 2428  wral 2793   wss 3461   c-bnj14 33473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-ral 2798 This theorem is referenced by:  bnj1311  33813  bnj1373  33819  bnj1498  33850  bnj1525  33858  bnj1523  33860
 Copyright terms: Public domain W3C validator