Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1294 Structured version   Unicode version

Theorem bnj1294 32955
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1294.1  |-  ( ph  ->  A. x  e.  A  ps )
bnj1294.2  |-  ( ph  ->  x  e.  A )
Assertion
Ref Expression
bnj1294  |-  ( ph  ->  ps )

Proof of Theorem bnj1294
StepHypRef Expression
1 bnj1294.2 . 2  |-  ( ph  ->  x  e.  A )
2 bnj1294.1 . 2  |-  ( ph  ->  A. x  e.  A  ps )
3 df-ral 2819 . . 3  |-  ( A. x  e.  A  ps  <->  A. x ( x  e.  A  ->  ps )
)
4 sp 1808 . . . 4  |-  ( A. x ( x  e.  A  ->  ps )  ->  ( x  e.  A  ->  ps ) )
54impcom 430 . . 3  |-  ( ( x  e.  A  /\  A. x ( x  e.  A  ->  ps )
)  ->  ps )
63, 5sylan2b 475 . 2  |-  ( ( x  e.  A  /\  A. x  e.  A  ps )  ->  ps )
71, 2, 6syl2anc 661 1  |-  ( ph  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1377    e. wcel 1767   A.wral 2814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-12 1803
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1597  df-ral 2819
This theorem is referenced by:  bnj1379  32968  bnj1121  33120  bnj1279  33153  bnj1286  33154  bnj1296  33156  bnj1421  33177  bnj1450  33185  bnj1489  33191  bnj1501  33202  bnj1523  33206
  Copyright terms: Public domain W3C validator