Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1259 Structured version   Unicode version

Theorem bnj1259 32310
Description: Technical lemma for bnj60 32356. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1259.1  |-  B  =  { d  |  ( d  C_  A  /\  A. x  e.  d  pred ( x ,  A ,  R )  C_  d
) }
bnj1259.2  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
bnj1259.3  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
bnj1259.4  |-  D  =  ( dom  g  i^i 
dom  h )
bnj1259.5  |-  E  =  { x  e.  D  |  ( g `  x )  =/=  (
h `  x ) }
bnj1259.6  |-  ( ph  <->  ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) ) )
bnj1259.7  |-  ( ps  <->  (
ph  /\  x  e.  E  /\  A. y  e.  E  -.  y R x ) )
Assertion
Ref Expression
bnj1259  |-  ( ph  ->  E. d  e.  B  h  Fn  d )
Distinct variable groups:    A, f    B, f, h    f, G, h    R, f    h, Y   
f, d, h    x, f, h
Allowed substitution hints:    ph( x, y, f, g, h, d)    ps( x, y, f, g, h, d)    A( x, y, g, h, d)    B( x, y, g, d)    C( x, y, f, g, h, d)    D( x, y, f, g, h, d)    R( x, y, g, h, d)    E( x, y, f, g, h, d)    G( x, y, g, d)    Y( x, y, f, g, d)

Proof of Theorem bnj1259
StepHypRef Expression
1 bnj1259.6 . 2  |-  ( ph  <->  ( R  FrSe  A  /\  g  e.  C  /\  h  e.  C  /\  ( g  |`  D )  =/=  ( h  |`  D ) ) )
2 abid 2438 . . . 4  |-  ( h  e.  { h  |  E. d  e.  B  ( h  Fn  d  /\  A. x  e.  d  ( h `  x
)  =  ( G `
 <. x ,  ( h  |`  pred ( x ,  A ,  R
) ) >. )
) }  <->  E. d  e.  B  ( h  Fn  d  /\  A. x  e.  d  ( h `  x )  =  ( G `  <. x ,  ( h  |`  pred ( x ,  A ,  R ) ) >.
) ) )
32bnj1238 32103 . . 3  |-  ( h  e.  { h  |  E. d  e.  B  ( h  Fn  d  /\  A. x  e.  d  ( h `  x
)  =  ( G `
 <. x ,  ( h  |`  pred ( x ,  A ,  R
) ) >. )
) }  ->  E. d  e.  B  h  Fn  d )
4 bnj1259.2 . . . 4  |-  Y  = 
<. x ,  ( f  |`  pred ( x ,  A ,  R ) ) >.
5 bnj1259.3 . . . 4  |-  C  =  { f  |  E. d  e.  B  (
f  Fn  d  /\  A. x  e.  d  ( f `  x )  =  ( G `  Y ) ) }
6 eqid 2451 . . . 4  |-  <. x ,  ( h  |`  pred ( x ,  A ,  R ) ) >.  =  <. x ,  ( h  |`  pred ( x ,  A ,  R
) ) >.
7 eqid 2451 . . . 4  |-  { h  |  E. d  e.  B  ( h  Fn  d  /\  A. x  e.  d  ( h `  x
)  =  ( G `
 <. x ,  ( h  |`  pred ( x ,  A ,  R
) ) >. )
) }  =  {
h  |  E. d  e.  B  ( h  Fn  d  /\  A. x  e.  d  ( h `  x )  =  ( G `  <. x ,  ( h  |`  pred ( x ,  A ,  R ) ) >.
) ) }
84, 5, 6, 7bnj1234 32307 . . 3  |-  C  =  { h  |  E. d  e.  B  (
h  Fn  d  /\  A. x  e.  d  ( h `  x )  =  ( G `  <. x ,  ( h  |`  pred ( x ,  A ,  R ) ) >. ) ) }
93, 8eleq2s 2559 . 2  |-  ( h  e.  C  ->  E. d  e.  B  h  Fn  d )
101, 9bnj771 32060 1  |-  ( ph  ->  E. d  e.  B  h  Fn  d )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   {cab 2436    =/= wne 2644   A.wral 2795   E.wrex 2796   {crab 2799    i^i cin 3428    C_ wss 3429   <.cop 3984   class class class wbr 4393   dom cdm 4941    |` cres 4943    Fn wfn 5514   ` cfv 5519    /\ w-bnj17 31977    predc-bnj14 31979    FrSe w-bnj15 31983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-br 4394  df-opab 4452  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-res 4953  df-iota 5482  df-fun 5521  df-fn 5522  df-fv 5527  df-bnj17 31978
This theorem is referenced by:  bnj1253  32311  bnj1286  32313  bnj1280  32314
  Copyright terms: Public domain W3C validator