Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj125 Structured version   Unicode version

Theorem bnj125 31865
Description: Technical lemma for bnj150 31869. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj125.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj125.2  |-  ( ph'  <->  [. 1o  /  n ]. ph )
bnj125.3  |-  ( ph"  <->  [. F  / 
f ]. ph' )
bnj125.4  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
Assertion
Ref Expression
bnj125  |-  ( ph"  <->  ( F `  (/) )  =  pred ( x ,  A ,  R ) )
Distinct variable groups:    A, f, n    f, F    R, f, n    x, f, n
Allowed substitution hints:    ph( x, f, n)    A( x)    R( x)    F( x, n)    ph'( x, f, n)   
ph"( x, f, n)

Proof of Theorem bnj125
StepHypRef Expression
1 bnj125.3 . 2  |-  ( ph"  <->  [. F  / 
f ]. ph' )
2 bnj125.2 . . . 4  |-  ( ph'  <->  [. 1o  /  n ]. ph )
32sbcbii 3246 . . 3  |-  ( [. F  /  f ]. ph'  <->  [. F  / 
f ]. [. 1o  /  n ]. ph )
4 bnj125.1 . . . . . 6  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
5 bnj105 31713 . . . . . 6  |-  1o  e.  _V
64, 5bnj91 31854 . . . . 5  |-  ( [. 1o  /  n ]. ph  <->  ( f `  (/) )  =  pred ( x ,  A ,  R ) )
76sbcbii 3246 . . . 4  |-  ( [. F  /  f ]. [. 1o  /  n ]. ph  <->  [. F  / 
f ]. ( f `  (/) )  =  pred (
x ,  A ,  R ) )
8 bnj125.4 . . . . . 6  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
98bnj95 31857 . . . . 5  |-  F  e. 
_V
10 fveq1 5690 . . . . . 6  |-  ( f  =  F  ->  (
f `  (/) )  =  ( F `  (/) ) )
1110eqeq1d 2451 . . . . 5  |-  ( f  =  F  ->  (
( f `  (/) )  = 
pred ( x ,  A ,  R )  <-> 
( F `  (/) )  = 
pred ( x ,  A ,  R ) ) )
129, 11sbcie 3221 . . . 4  |-  ( [. F  /  f ]. (
f `  (/) )  = 
pred ( x ,  A ,  R )  <-> 
( F `  (/) )  = 
pred ( x ,  A ,  R ) )
137, 12bitri 249 . . 3  |-  ( [. F  /  f ]. [. 1o  /  n ]. ph  <->  ( F `  (/) )  =  pred ( x ,  A ,  R ) )
143, 13bitri 249 . 2  |-  ( [. F  /  f ]. ph'  <->  ( F `  (/) )  =  pred ( x ,  A ,  R ) )
151, 14bitri 249 1  |-  ( ph"  <->  ( F `  (/) )  =  pred ( x ,  A ,  R ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    = wceq 1369   [.wsbc 3186   (/)c0 3637   {csn 3877   <.cop 3883   ` cfv 5418   1oc1o 6913    predc-bnj14 31676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-rex 2721  df-v 2974  df-sbc 3187  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-pw 3862  df-sn 3878  df-pr 3880  df-uni 4092  df-br 4293  df-suc 4725  df-iota 5381  df-fv 5426  df-1o 6920
This theorem is referenced by:  bnj150  31869  bnj153  31873
  Copyright terms: Public domain W3C validator