Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj125 Structured version   Unicode version

Theorem bnj125 33410
 Description: Technical lemma for bnj150 33414. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj125.1
bnj125.2
bnj125.3
bnj125.4
Assertion
Ref Expression
bnj125
Distinct variable groups:   ,,   ,   ,,   ,,
Allowed substitution hints:   (,,)   ()   ()   (,)   (,,)   (,,)

Proof of Theorem bnj125
StepHypRef Expression
1 bnj125.3 . 2
2 bnj125.2 . . . 4
32sbcbii 3396 . . 3
4 bnj125.1 . . . . . 6
5 bnj105 33258 . . . . . 6
64, 5bnj91 33399 . . . . 5
76sbcbii 3396 . . . 4
8 bnj125.4 . . . . . 6
98bnj95 33402 . . . . 5
10 fveq1 5871 . . . . . 6
1110eqeq1d 2469 . . . . 5
129, 11sbcie 3371 . . . 4
137, 12bitri 249 . . 3
143, 13bitri 249 . 2
151, 14bitri 249 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wceq 1379  wsbc 3336  c0 3790  csn 4033  cop 4039  cfv 5594  c1o 7135   c-bnj14 33221 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-rex 2823  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-pw 4018  df-sn 4034  df-pr 4036  df-uni 4252  df-br 4454  df-suc 4890  df-iota 5557  df-fv 5602  df-1o 7142 This theorem is referenced by:  bnj150  33414  bnj153  33418
 Copyright terms: Public domain W3C validator