Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1204 Structured version   Unicode version

Theorem bnj1204 32306
Description: Well-founded induction. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1204.1  |-  ( ps  <->  A. y  e.  A  ( y R x  ->  [. y  /  x ]. ph ) )
Assertion
Ref Expression
bnj1204  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  A. x  e.  A  ph )
Distinct variable groups:    x, A, y    x, R, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)

Proof of Theorem bnj1204
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simp1 988 . . . . . 6  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  ->  R  FrSe  A )
2 ssrab2 3538 . . . . . . 7  |-  { x  e.  A  |  -.  ph }  C_  A
32a1i 11 . . . . . 6  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  ->  { x  e.  A  |  -.  ph }  C_  A )
4 simp3 990 . . . . . . 7  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  ->  E. x  e.  A  -.  ph )
5 rabn0 3758 . . . . . . 7  |-  ( { x  e.  A  |  -.  ph }  =/=  (/)  <->  E. x  e.  A  -.  ph )
64, 5sylibr 212 . . . . . 6  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  ->  { x  e.  A  |  -.  ph }  =/=  (/) )
7 nfrab1 3000 . . . . . . . 8  |-  F/_ x { x  e.  A  |  -.  ph }
87nfcrii 2605 . . . . . . 7  |-  ( z  e.  { x  e.  A  |  -.  ph }  ->  A. x  z  e. 
{ x  e.  A  |  -.  ph } )
98bnj1228 32305 . . . . . 6  |-  ( ( R  FrSe  A  /\  { x  e.  A  |  -.  ph }  C_  A  /\  { x  e.  A  |  -.  ph }  =/=  (/) )  ->  E. x  e.  { x  e.  A  |  -.  ph } A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )
101, 3, 6, 9syl3anc 1219 . . . . 5  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  ->  E. x  e.  { x  e.  A  |  -.  ph } A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )
11 biid 236 . . . . 5  |-  ( ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  /\  x  e.  { x  e.  A  |  -.  ph }  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  <->  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  /\  x  e. 
{ x  e.  A  |  -.  ph }  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x ) )
12 nfv 1674 . . . . . . 7  |-  F/ x  R  FrSe  A
13 nfra1 2806 . . . . . . 7  |-  F/ x A. x  e.  A  ( ps  ->  ph )
14 nfre1 2884 . . . . . . 7  |-  F/ x E. x  e.  A  -.  ph
1512, 13, 14nf3an 1865 . . . . . 6  |-  F/ x
( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )
1615nfri 1810 . . . . 5  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  ->  A. x
( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph ) )
1710, 11, 16bnj1521 32147 . . . 4  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  ->  E. x
( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  /\  x  e.  { x  e.  A  |  -.  ph }  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x ) )
18 eqid 2451 . . . . . 6  |-  { x  e.  A  |  -.  ph }  =  { x  e.  A  |  -.  ph }
1918, 11bnj1212 32096 . . . . 5  |-  ( ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  /\  x  e.  { x  e.  A  |  -.  ph }  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  x  e.  A )
20 nfra1 2806 . . . . . . . 8  |-  F/ y A. y  e.  {
x  e.  A  |  -.  ph }  -.  y R x
21 simp3 990 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  A  /\  y R x  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )
2221bnj1211 32094 . . . . . . . . . . . . . 14  |-  ( ( y  e.  A  /\  y R x  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  A. y
( y  e.  {
x  e.  A  |  -.  ph }  ->  -.  y R x ) )
23 con2b 334 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  { x  e.  A  |  -.  ph }  ->  -.  y R x )  <->  ( y R x  ->  -.  y  e.  { x  e.  A  |  -.  ph } ) )
2423albii 1611 . . . . . . . . . . . . . 14  |-  ( A. y ( y  e. 
{ x  e.  A  |  -.  ph }  ->  -.  y R x )  <->  A. y ( y R x  ->  -.  y  e.  { x  e.  A  |  -.  ph } ) )
2522, 24sylib 196 . . . . . . . . . . . . 13  |-  ( ( y  e.  A  /\  y R x  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  A. y
( y R x  ->  -.  y  e.  { x  e.  A  |  -.  ph } ) )
26 simp2 989 . . . . . . . . . . . . 13  |-  ( ( y  e.  A  /\  y R x  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  y R x )
27 sp 1796 . . . . . . . . . . . . 13  |-  ( A. y ( y R x  ->  -.  y  e.  { x  e.  A  |  -.  ph } )  ->  ( y R x  ->  -.  y  e.  { x  e.  A  |  -.  ph } ) )
2825, 26, 27sylc 60 . . . . . . . . . . . 12  |-  ( ( y  e.  A  /\  y R x  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  -.  y  e.  { x  e.  A  |  -.  ph } )
29 simp1 988 . . . . . . . . . . . 12  |-  ( ( y  e.  A  /\  y R x  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  y  e.  A )
30 nfcv 2613 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x A
3130elrabsf 3326 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  { x  e.  A  |  -.  ph } 
<->  ( y  e.  A  /\  [. y  /  x ].  -.  ph ) )
32 vex 3074 . . . . . . . . . . . . . . . . . . . 20  |-  y  e. 
_V
33 sbcng 3328 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  _V  ->  ( [. y  /  x ].  -.  ph  <->  -.  [. y  /  x ]. ph ) )
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( [. y  /  x ].  -.  ph  <->  -. 
[. y  /  x ]. ph )
3534anbi2i 694 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  A  /\  [. y  /  x ].  -.  ph )  <->  ( y  e.  A  /\  -.  [. y  /  x ]. ph )
)
3631, 35bitri 249 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  { x  e.  A  |  -.  ph } 
<->  ( y  e.  A  /\  -.  [. y  /  x ]. ph ) )
3736notbii 296 . . . . . . . . . . . . . . . 16  |-  ( -.  y  e.  { x  e.  A  |  -.  ph }  <->  -.  ( y  e.  A  /\  -.  [. y  /  x ]. ph )
)
38 imnan 422 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  A  ->  -.  -.  [. y  /  x ]. ph )  <->  -.  (
y  e.  A  /\  -.  [. y  /  x ]. ph ) )
3937, 38bitr4i 252 . . . . . . . . . . . . . . 15  |-  ( -.  y  e.  { x  e.  A  |  -.  ph }  <->  ( y  e.  A  ->  -.  -.  [. y  /  x ]. ph )
)
4039biimpi 194 . . . . . . . . . . . . . 14  |-  ( -.  y  e.  { x  e.  A  |  -.  ph }  ->  ( y  e.  A  ->  -.  -.  [. y  /  x ]. ph ) )
4140imp 429 . . . . . . . . . . . . 13  |-  ( ( -.  y  e.  {
x  e.  A  |  -.  ph }  /\  y  e.  A )  ->  -.  -.  [. y  /  x ]. ph )
4241notnotrd 113 . . . . . . . . . . . 12  |-  ( ( -.  y  e.  {
x  e.  A  |  -.  ph }  /\  y  e.  A )  ->  [. y  /  x ]. ph )
4328, 29, 42syl2anc 661 . . . . . . . . . . 11  |-  ( ( y  e.  A  /\  y R x  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  [. y  /  x ]. ph )
44433expa 1188 . . . . . . . . . 10  |-  ( ( ( y  e.  A  /\  y R x )  /\  A. y  e. 
{ x  e.  A  |  -.  ph }  -.  y R x )  ->  [. y  /  x ]. ph )
4544expcom 435 . . . . . . . . 9  |-  ( A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x  ->  ( (
y  e.  A  /\  y R x )  ->  [. y  /  x ]. ph ) )
4645expd 436 . . . . . . . 8  |-  ( A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x  ->  ( y  e.  A  ->  ( y R x  ->  [. y  /  x ]. ph )
) )
4720, 46ralrimi 2818 . . . . . . 7  |-  ( A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x  ->  A. y  e.  A  ( y R x  ->  [. y  /  x ]. ph )
)
48 bnj1204.1 . . . . . . 7  |-  ( ps  <->  A. y  e.  A  ( y R x  ->  [. y  /  x ]. ph ) )
4947, 48sylibr 212 . . . . . 6  |-  ( A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x  ->  ps )
50493ad2ant3 1011 . . . . 5  |-  ( ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  /\  x  e.  { x  e.  A  |  -.  ph }  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  ps )
51 simp12 1019 . . . . 5  |-  ( ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  /\  x  e.  { x  e.  A  |  -.  ph }  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  A. x  e.  A  ( ps  ->  ph ) )
52 simp3 990 . . . . . . 7  |-  ( ( x  e.  A  /\  ps  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  A. x  e.  A  ( ps  ->  ph ) )
5352bnj1211 32094 . . . . . 6  |-  ( ( x  e.  A  /\  ps  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  A. x
( x  e.  A  ->  ( ps  ->  ph )
) )
54 simp1 988 . . . . . 6  |-  ( ( x  e.  A  /\  ps  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  x  e.  A )
55 simp2 989 . . . . . 6  |-  ( ( x  e.  A  /\  ps  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  ps )
56 sp 1796 . . . . . 6  |-  ( A. x ( x  e.  A  ->  ( ps  ->  ph ) )  -> 
( x  e.  A  ->  ( ps  ->  ph )
) )
5753, 54, 55, 56syl3c 61 . . . . 5  |-  ( ( x  e.  A  /\  ps  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  ph )
5819, 50, 51, 57syl3anc 1219 . . . 4  |-  ( ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  /\  x  e.  { x  e.  A  |  -.  ph }  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  ph )
59 rabid 2996 . . . . . 6  |-  ( x  e.  { x  e.  A  |  -.  ph } 
<->  ( x  e.  A  /\  -.  ph ) )
6059simprbi 464 . . . . 5  |-  ( x  e.  { x  e.  A  |  -.  ph }  ->  -.  ph )
61603ad2ant2 1010 . . . 4  |-  ( ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  /\  x  e.  { x  e.  A  |  -.  ph }  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  -.  ph )
6217, 58, 61bnj1304 32116 . . 3  |-  -.  ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )
6362bnj1224 32098 . 2  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  -.  E. x  e.  A  -.  ph )
64 dfral2 2849 . 2  |-  ( A. x  e.  A  ph  <->  -.  E. x  e.  A  -.  ph )
6563, 64sylibr 212 1  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  A. x  e.  A  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965   A.wal 1368    e. wcel 1758    =/= wne 2644   A.wral 2795   E.wrex 2796   {crab 2799   _Vcvv 3071   [.wsbc 3287    C_ wss 3429   (/)c0 3738   class class class wbr 4393    FrSe w-bnj15 31983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-reg 7911  ax-inf2 7951
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-om 6580  df-1o 7023  df-bnj17 31978  df-bnj14 31980  df-bnj13 31982  df-bnj15 31984  df-bnj18 31986  df-bnj19 31988
This theorem is referenced by:  bnj1417  32335
  Copyright terms: Public domain W3C validator