Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1204 Structured version   Unicode version

Theorem bnj1204 29829
Description: Well-founded induction. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1204.1  |-  ( ps  <->  A. y  e.  A  ( y R x  ->  [. y  /  x ]. ph ) )
Assertion
Ref Expression
bnj1204  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  A. x  e.  A  ph )
Distinct variable groups:    x, A, y    x, R, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)

Proof of Theorem bnj1204
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simp1 1005 . . . . . 6  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  ->  R  FrSe  A )
2 ssrab2 3546 . . . . . . 7  |-  { x  e.  A  |  -.  ph }  C_  A
32a1i 11 . . . . . 6  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  ->  { x  e.  A  |  -.  ph }  C_  A )
4 simp3 1007 . . . . . . 7  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  ->  E. x  e.  A  -.  ph )
5 rabn0 3782 . . . . . . 7  |-  ( { x  e.  A  |  -.  ph }  =/=  (/)  <->  E. x  e.  A  -.  ph )
64, 5sylibr 215 . . . . . 6  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  ->  { x  e.  A  |  -.  ph }  =/=  (/) )
7 nfrab1 3006 . . . . . . . 8  |-  F/_ x { x  e.  A  |  -.  ph }
87nfcrii 2572 . . . . . . 7  |-  ( z  e.  { x  e.  A  |  -.  ph }  ->  A. x  z  e. 
{ x  e.  A  |  -.  ph } )
98bnj1228 29828 . . . . . 6  |-  ( ( R  FrSe  A  /\  { x  e.  A  |  -.  ph }  C_  A  /\  { x  e.  A  |  -.  ph }  =/=  (/) )  ->  E. x  e.  { x  e.  A  |  -.  ph } A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )
101, 3, 6, 9syl3anc 1264 . . . . 5  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  ->  E. x  e.  { x  e.  A  |  -.  ph } A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )
11 biid 239 . . . . 5  |-  ( ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  /\  x  e.  { x  e.  A  |  -.  ph }  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  <->  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  /\  x  e. 
{ x  e.  A  |  -.  ph }  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x ) )
12 nfv 1755 . . . . . . 7  |-  F/ x  R  FrSe  A
13 nfra1 2803 . . . . . . 7  |-  F/ x A. x  e.  A  ( ps  ->  ph )
14 nfre1 2883 . . . . . . 7  |-  F/ x E. x  e.  A  -.  ph
1512, 13, 14nf3an 1990 . . . . . 6  |-  F/ x
( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )
1615nfri 1929 . . . . 5  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  ->  A. x
( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph ) )
1710, 11, 16bnj1521 29670 . . . 4  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  ->  E. x
( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  /\  x  e.  { x  e.  A  |  -.  ph }  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x ) )
18 eqid 2422 . . . . . 6  |-  { x  e.  A  |  -.  ph }  =  { x  e.  A  |  -.  ph }
1918, 11bnj1212 29619 . . . . 5  |-  ( ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  /\  x  e.  { x  e.  A  |  -.  ph }  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  x  e.  A )
20 nfra1 2803 . . . . . . . 8  |-  F/ y A. y  e.  {
x  e.  A  |  -.  ph }  -.  y R x
21 simp3 1007 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  A  /\  y R x  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )
2221bnj1211 29617 . . . . . . . . . . . . . 14  |-  ( ( y  e.  A  /\  y R x  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  A. y
( y  e.  {
x  e.  A  |  -.  ph }  ->  -.  y R x ) )
23 con2b 335 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  { x  e.  A  |  -.  ph }  ->  -.  y R x )  <->  ( y R x  ->  -.  y  e.  { x  e.  A  |  -.  ph } ) )
2423albii 1685 . . . . . . . . . . . . . 14  |-  ( A. y ( y  e. 
{ x  e.  A  |  -.  ph }  ->  -.  y R x )  <->  A. y ( y R x  ->  -.  y  e.  { x  e.  A  |  -.  ph } ) )
2522, 24sylib 199 . . . . . . . . . . . . 13  |-  ( ( y  e.  A  /\  y R x  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  A. y
( y R x  ->  -.  y  e.  { x  e.  A  |  -.  ph } ) )
26 simp2 1006 . . . . . . . . . . . . 13  |-  ( ( y  e.  A  /\  y R x  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  y R x )
27 sp 1914 . . . . . . . . . . . . 13  |-  ( A. y ( y R x  ->  -.  y  e.  { x  e.  A  |  -.  ph } )  ->  ( y R x  ->  -.  y  e.  { x  e.  A  |  -.  ph } ) )
2825, 26, 27sylc 62 . . . . . . . . . . . 12  |-  ( ( y  e.  A  /\  y R x  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  -.  y  e.  { x  e.  A  |  -.  ph } )
29 simp1 1005 . . . . . . . . . . . 12  |-  ( ( y  e.  A  /\  y R x  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  y  e.  A )
30 nfcv 2580 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x A
3130elrabsf 3338 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  { x  e.  A  |  -.  ph } 
<->  ( y  e.  A  /\  [. y  /  x ].  -.  ph ) )
32 vex 3083 . . . . . . . . . . . . . . . . . . . 20  |-  y  e. 
_V
33 sbcng 3340 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  _V  ->  ( [. y  /  x ].  -.  ph  <->  -.  [. y  /  x ]. ph ) )
3432, 33ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( [. y  /  x ].  -.  ph  <->  -. 
[. y  /  x ]. ph )
3534anbi2i 698 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  A  /\  [. y  /  x ].  -.  ph )  <->  ( y  e.  A  /\  -.  [. y  /  x ]. ph )
)
3631, 35bitri 252 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  { x  e.  A  |  -.  ph } 
<->  ( y  e.  A  /\  -.  [. y  /  x ]. ph ) )
3736notbii 297 . . . . . . . . . . . . . . . 16  |-  ( -.  y  e.  { x  e.  A  |  -.  ph }  <->  -.  ( y  e.  A  /\  -.  [. y  /  x ]. ph )
)
38 imnan 423 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  A  ->  -.  -.  [. y  /  x ]. ph )  <->  -.  (
y  e.  A  /\  -.  [. y  /  x ]. ph ) )
3937, 38bitr4i 255 . . . . . . . . . . . . . . 15  |-  ( -.  y  e.  { x  e.  A  |  -.  ph }  <->  ( y  e.  A  ->  -.  -.  [. y  /  x ]. ph )
)
4039biimpi 197 . . . . . . . . . . . . . 14  |-  ( -.  y  e.  { x  e.  A  |  -.  ph }  ->  ( y  e.  A  ->  -.  -.  [. y  /  x ]. ph ) )
4140imp 430 . . . . . . . . . . . . 13  |-  ( ( -.  y  e.  {
x  e.  A  |  -.  ph }  /\  y  e.  A )  ->  -.  -.  [. y  /  x ]. ph )
4241notnotrd 116 . . . . . . . . . . . 12  |-  ( ( -.  y  e.  {
x  e.  A  |  -.  ph }  /\  y  e.  A )  ->  [. y  /  x ]. ph )
4328, 29, 42syl2anc 665 . . . . . . . . . . 11  |-  ( ( y  e.  A  /\  y R x  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  [. y  /  x ]. ph )
44433expa 1205 . . . . . . . . . 10  |-  ( ( ( y  e.  A  /\  y R x )  /\  A. y  e. 
{ x  e.  A  |  -.  ph }  -.  y R x )  ->  [. y  /  x ]. ph )
4544expcom 436 . . . . . . . . 9  |-  ( A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x  ->  ( (
y  e.  A  /\  y R x )  ->  [. y  /  x ]. ph ) )
4645expd 437 . . . . . . . 8  |-  ( A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x  ->  ( y  e.  A  ->  ( y R x  ->  [. y  /  x ]. ph )
) )
4720, 46ralrimi 2822 . . . . . . 7  |-  ( A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x  ->  A. y  e.  A  ( y R x  ->  [. y  /  x ]. ph )
)
48 bnj1204.1 . . . . . . 7  |-  ( ps  <->  A. y  e.  A  ( y R x  ->  [. y  /  x ]. ph ) )
4947, 48sylibr 215 . . . . . 6  |-  ( A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x  ->  ps )
50493ad2ant3 1028 . . . . 5  |-  ( ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  /\  x  e.  { x  e.  A  |  -.  ph }  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  ps )
51 simp12 1036 . . . . 5  |-  ( ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  /\  x  e.  { x  e.  A  |  -.  ph }  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  A. x  e.  A  ( ps  ->  ph ) )
52 simp3 1007 . . . . . . 7  |-  ( ( x  e.  A  /\  ps  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  A. x  e.  A  ( ps  ->  ph ) )
5352bnj1211 29617 . . . . . 6  |-  ( ( x  e.  A  /\  ps  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  A. x
( x  e.  A  ->  ( ps  ->  ph )
) )
54 simp1 1005 . . . . . 6  |-  ( ( x  e.  A  /\  ps  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  x  e.  A )
55 simp2 1006 . . . . . 6  |-  ( ( x  e.  A  /\  ps  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  ps )
56 sp 1914 . . . . . 6  |-  ( A. x ( x  e.  A  ->  ( ps  ->  ph ) )  -> 
( x  e.  A  ->  ( ps  ->  ph )
) )
5753, 54, 55, 56syl3c 63 . . . . 5  |-  ( ( x  e.  A  /\  ps  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  ph )
5819, 50, 51, 57syl3anc 1264 . . . 4  |-  ( ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  /\  x  e.  { x  e.  A  |  -.  ph }  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  ph )
59 rabid 3002 . . . . . 6  |-  ( x  e.  { x  e.  A  |  -.  ph } 
<->  ( x  e.  A  /\  -.  ph ) )
6059simprbi 465 . . . . 5  |-  ( x  e.  { x  e.  A  |  -.  ph }  ->  -.  ph )
61603ad2ant2 1027 . . . 4  |-  ( ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )  /\  x  e.  { x  e.  A  |  -.  ph }  /\  A. y  e.  { x  e.  A  |  -.  ph }  -.  y R x )  ->  -.  ph )
6217, 58, 61bnj1304 29639 . . 3  |-  -.  ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  -.  ph )
6362bnj1224 29621 . 2  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  -.  E. x  e.  A  -.  ph )
64 dfral2 2869 . 2  |-  ( A. x  e.  A  ph  <->  -.  E. x  e.  A  -.  ph )
6563, 64sylibr 215 1  |-  ( ( R  FrSe  A  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  A. x  e.  A  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982   A.wal 1435    e. wcel 1872    =/= wne 2614   A.wral 2771   E.wrex 2772   {crab 2775   _Vcvv 3080   [.wsbc 3299    C_ wss 3436   (/)c0 3761   class class class wbr 4423    FrSe w-bnj15 29505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-reg 8116  ax-inf2 8155
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-om 6707  df-1o 7193  df-bnj17 29500  df-bnj14 29502  df-bnj13 29504  df-bnj15 29506  df-bnj18 29508  df-bnj19 29510
This theorem is referenced by:  bnj1417  29858
  Copyright terms: Public domain W3C validator