Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1177 Structured version   Unicode version

Theorem bnj1177 34163
Description: Technical lemma for bnj69 34167. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1177.2  |-  ( ps  <->  ( X  e.  B  /\  y  e.  B  /\  y R X ) )
bnj1177.3  |-  C  =  (  trCl ( X ,  A ,  R )  i^i  B )
bnj1177.9  |-  ( (
ph  /\  ps )  ->  R  FrSe  A )
bnj1177.13  |-  ( (
ph  /\  ps )  ->  B  C_  A )
bnj1177.17  |-  ( (
ph  /\  ps )  ->  X  e.  A )
Assertion
Ref Expression
bnj1177  |-  ( (
ph  /\  ps )  ->  ( R  Fr  A  /\  C  C_  A  /\  C  =/=  (/)  /\  C  e. 
_V ) )

Proof of Theorem bnj1177
StepHypRef Expression
1 bnj1177.9 . . 3  |-  ( (
ph  /\  ps )  ->  R  FrSe  A )
2 df-bnj15 33846 . . . 4  |-  ( R 
FrSe  A  <->  ( R  Fr  A  /\  R  Se  A
) )
32simplbi 460 . . 3  |-  ( R 
FrSe  A  ->  R  Fr  A )
41, 3syl 16 . 2  |-  ( (
ph  /\  ps )  ->  R  Fr  A )
5 bnj1177.3 . . . 4  |-  C  =  (  trCl ( X ,  A ,  R )  i^i  B )
6 bnj1147 34151 . . . . 5  |-  trCl ( X ,  A ,  R )  C_  A
7 ssinss1 3722 . . . . 5  |-  (  trCl ( X ,  A ,  R )  C_  A  ->  (  trCl ( X ,  A ,  R )  i^i  B )  C_  A
)
86, 7ax-mp 5 . . . 4  |-  (  trCl ( X ,  A ,  R )  i^i  B
)  C_  A
95, 8eqsstri 3529 . . 3  |-  C  C_  A
109a1i 11 . 2  |-  ( (
ph  /\  ps )  ->  C  C_  A )
11 bnj1177.17 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  X  e.  A )
12 bnj906 34089 . . . . . . 7  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  pred ( X ,  A ,  R )  C_ 
trCl ( X ,  A ,  R )
)
131, 11, 12syl2anc 661 . . . . . 6  |-  ( (
ph  /\  ps )  ->  pred ( X ,  A ,  R )  C_ 
trCl ( X ,  A ,  R )
)
14 ssrin 3719 . . . . . 6  |-  (  pred ( X ,  A ,  R )  C_  trCl ( X ,  A ,  R )  ->  (  pred ( X ,  A ,  R )  i^i  B
)  C_  (  trCl ( X ,  A ,  R )  i^i  B
) )
1513, 14syl 16 . . . . 5  |-  ( (
ph  /\  ps )  ->  (  pred ( X ,  A ,  R )  i^i  B )  C_  (  trCl ( X ,  A ,  R )  i^i  B
) )
16 bnj1177.13 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  B  C_  A )
17 bnj1177.2 . . . . . . . . . 10  |-  ( ps  <->  ( X  e.  B  /\  y  e.  B  /\  y R X ) )
1817simp2bi 1012 . . . . . . . . 9  |-  ( ps 
->  y  e.  B
)
1918adantl 466 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  y  e.  B )
2016, 19sseldd 3500 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  y  e.  A )
2117simp3bi 1013 . . . . . . . 8  |-  ( ps 
->  y R X )
2221adantl 466 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  y R X )
23 bnj1152 34155 . . . . . . 7  |-  ( y  e.  pred ( X ,  A ,  R )  <->  ( y  e.  A  /\  y R X ) )
2420, 22, 23sylanbrc 664 . . . . . 6  |-  ( (
ph  /\  ps )  ->  y  e.  pred ( X ,  A ,  R ) )
2524, 19elind 3684 . . . . 5  |-  ( (
ph  /\  ps )  ->  y  e.  (  pred ( X ,  A ,  R )  i^i  B
) )
2615, 25sseldd 3500 . . . 4  |-  ( (
ph  /\  ps )  ->  y  e.  (  trCl ( X ,  A ,  R )  i^i  B
) )
27 ne0i 3799 . . . 4  |-  ( y  e.  (  trCl ( X ,  A ,  R )  i^i  B
)  ->  (  trCl ( X ,  A ,  R )  i^i  B
)  =/=  (/) )
2826, 27syl 16 . . 3  |-  ( (
ph  /\  ps )  ->  (  trCl ( X ,  A ,  R )  i^i  B )  =/=  (/) )
295neeq1i 2742 . . 3  |-  ( C  =/=  (/)  <->  (  trCl ( X ,  A ,  R )  i^i  B
)  =/=  (/) )
3028, 29sylibr 212 . 2  |-  ( (
ph  /\  ps )  ->  C  =/=  (/) )
31 bnj893 34087 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  trCl ( X ,  A ,  R )  e.  _V )
321, 11, 31syl2anc 661 . . 3  |-  ( (
ph  /\  ps )  ->  trCl ( X ,  A ,  R )  e.  _V )
33 inex1g 4599 . . . 4  |-  (  trCl ( X ,  A ,  R )  e.  _V  ->  (  trCl ( X ,  A ,  R )  i^i  B )  e.  _V )
345, 33syl5eqel 2549 . . 3  |-  (  trCl ( X ,  A ,  R )  e.  _V  ->  C  e.  _V )
3532, 34syl 16 . 2  |-  ( (
ph  /\  ps )  ->  C  e.  _V )
364, 10, 30, 35bnj951 33935 1  |-  ( (
ph  /\  ps )  ->  ( R  Fr  A  /\  C  C_  A  /\  C  =/=  (/)  /\  C  e. 
_V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   _Vcvv 3109    i^i cin 3470    C_ wss 3471   (/)c0 3793   class class class wbr 4456    Fr wfr 4844    /\ w-bnj17 33839    predc-bnj14 33841    Se w-bnj13 33843    FrSe w-bnj15 33845    trClc-bnj18 33847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-reg 8036  ax-inf2 8075
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-om 6700  df-1o 7148  df-bnj17 33840  df-bnj14 33842  df-bnj13 33844  df-bnj15 33846  df-bnj18 33848
This theorem is referenced by:  bnj1190  34165
  Copyright terms: Public domain W3C validator