Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1154 Structured version   Unicode version

Theorem bnj1154 32307
Description: Property of  Fr. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1154  |-  ( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/)  /\  B  e. 
_V )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
Distinct variable groups:    x, A, y    x, B, y    x, R, y

Proof of Theorem bnj1154
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 bnj658 32060 . 2  |-  ( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/)  /\  B  e. 
_V )  ->  ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/) ) )
2 elisset 3087 . . . . 5  |-  ( B  e.  _V  ->  E. b 
b  =  B )
32bnj708 32065 . . . 4  |-  ( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/)  /\  B  e. 
_V )  ->  E. b 
b  =  B )
4 df-fr 4786 . . . . . . . 8  |-  ( R  Fr  A  <->  A. b
( ( b  C_  A  /\  b  =/=  (/) )  ->  E. x  e.  b  A. y  e.  b  -.  y R x ) )
54biimpi 194 . . . . . . 7  |-  ( R  Fr  A  ->  A. b
( ( b  C_  A  /\  b  =/=  (/) )  ->  E. x  e.  b  A. y  e.  b  -.  y R x ) )
6519.21bi 1809 . . . . . 6  |-  ( R  Fr  A  ->  (
( b  C_  A  /\  b  =/=  (/) )  ->  E. x  e.  b  A. y  e.  b  -.  y R x ) )
763impib 1186 . . . . 5  |-  ( ( R  Fr  A  /\  b  C_  A  /\  b  =/=  (/) )  ->  E. x  e.  b  A. y  e.  b  -.  y R x )
8 sseq1 3484 . . . . . . 7  |-  ( b  =  B  ->  (
b  C_  A  <->  B  C_  A
) )
9 neeq1 2732 . . . . . . 7  |-  ( b  =  B  ->  (
b  =/=  (/)  <->  B  =/=  (/) ) )
108, 93anbi23d 1293 . . . . . 6  |-  ( b  =  B  ->  (
( R  Fr  A  /\  b  C_  A  /\  b  =/=  (/) )  <->  ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/) ) ) )
11 raleq 3021 . . . . . . 7  |-  ( b  =  B  ->  ( A. y  e.  b  -.  y R x  <->  A. y  e.  B  -.  y R x ) )
1211rexeqbi1dv 3030 . . . . . 6  |-  ( b  =  B  ->  ( E. x  e.  b  A. y  e.  b  -.  y R x  <->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
1310, 12imbi12d 320 . . . . 5  |-  ( b  =  B  ->  (
( ( R  Fr  A  /\  b  C_  A  /\  b  =/=  (/) )  ->  E. x  e.  b  A. y  e.  b  -.  y R x )  <-> 
( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) ) )
147, 13mpbii 211 . . . 4  |-  ( b  =  B  ->  (
( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
153, 14bnj593 32054 . . 3  |-  ( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/)  /\  B  e. 
_V )  ->  E. b
( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
1615bnj937 32082 . 2  |-  ( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/)  /\  B  e. 
_V )  ->  (
( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
171, 16mpd 15 1  |-  ( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/)  /\  B  e. 
_V )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965   A.wal 1368    = wceq 1370   E.wex 1587    e. wcel 1758    =/= wne 2647   A.wral 2798   E.wrex 2799   _Vcvv 3076    C_ wss 3435   (/)c0 3744   class class class wbr 4399    Fr wfr 4783    /\ w-bnj17 31991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-v 3078  df-in 3442  df-ss 3449  df-fr 4786  df-bnj17 31992
This theorem is referenced by:  bnj1190  32316
  Copyright terms: Public domain W3C validator