Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1148 Structured version   Unicode version

Theorem bnj1148 31992
Description: Property of  pred. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1148  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  pred ( X ,  A ,  R )  e.  _V )

Proof of Theorem bnj1148
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elisset 2988 . . . . 5  |-  ( X  e.  A  ->  E. x  x  =  X )
21adantl 466 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  E. x  x  =  X )
3 bnj93 31861 . . . . 5  |-  ( ( R  FrSe  A  /\  x  e.  A )  ->  pred ( x ,  A ,  R )  e.  _V )
4 eleq1 2503 . . . . . . 7  |-  ( x  =  X  ->  (
x  e.  A  <->  X  e.  A ) )
54anbi2d 703 . . . . . 6  |-  ( x  =  X  ->  (
( R  FrSe  A  /\  x  e.  A
)  <->  ( R  FrSe  A  /\  X  e.  A
) ) )
6 bnj602 31913 . . . . . . 7  |-  ( x  =  X  ->  pred (
x ,  A ,  R )  =  pred ( X ,  A ,  R ) )
76eleq1d 2509 . . . . . 6  |-  ( x  =  X  ->  (  pred ( x ,  A ,  R )  e.  _V  <->  pred ( X ,  A ,  R )  e.  _V ) )
85, 7imbi12d 320 . . . . 5  |-  ( x  =  X  ->  (
( ( R  FrSe  A  /\  x  e.  A
)  ->  pred ( x ,  A ,  R
)  e.  _V )  <->  ( ( R  FrSe  A  /\  X  e.  A
)  ->  pred ( X ,  A ,  R
)  e.  _V )
) )
93, 8mpbii 211 . . . 4  |-  ( x  =  X  ->  (
( R  FrSe  A  /\  X  e.  A
)  ->  pred ( X ,  A ,  R
)  e.  _V )
)
102, 9bnj593 31742 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  E. x ( ( R  FrSe  A  /\  X  e.  A )  ->  pred ( X ,  A ,  R )  e.  _V ) )
1110bnj937 31770 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  ( ( R  FrSe  A  /\  X  e.  A
)  ->  pred ( X ,  A ,  R
)  e.  _V )
)
1211pm2.43i 47 1  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  pred ( X ,  A ,  R )  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   _Vcvv 2977    predc-bnj14 31681    FrSe w-bnj15 31685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ral 2725  df-rab 2729  df-v 2979  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-br 4298  df-bnj14 31682  df-bnj13 31684  df-bnj15 31686
This theorem is referenced by:  bnj1136  31993  bnj1413  32031
  Copyright terms: Public domain W3C validator