Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1145 Unicode version

Theorem bnj1145 29068
Description: Technical lemma for bnj69 29085. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1145.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj1145.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj1145.3  |-  D  =  ( om  \  { (/)
} )
bnj1145.4  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
bnj1145.5  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj1145.6  |-  ( th  <->  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  /\  ( j  e.  n  /\  i  =  suc  j ) ) )
Assertion
Ref Expression
bnj1145  |-  trCl ( X ,  A ,  R )  C_  A
Distinct variable groups:    A, f,
i, j, n, y    D, i, j    R, f, i, j, n, y   
f, X, i, n, y    ch, j    ph, i
Allowed substitution hints:    ph( y, f, j, n)    ps( y,
f, i, j, n)    ch( y, f, i, n)    th( y, f, i, j, n)    B( y, f, i, j, n)    D( y,
f, n)    X( j)

Proof of Theorem bnj1145
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 bnj1145.1 . . 3  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
2 bnj1145.2 . . 3  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
3 bnj1145.3 . . 3  |-  D  =  ( om  \  { (/)
} )
4 bnj1145.4 . . 3  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
51, 2, 3, 4bnj882 29003 . 2  |-  trCl ( X ,  A ,  R )  =  U_ f  e.  B  U_ i  e.  dom  f ( f `
 i )
6 ss2iun 4068 . . . 4  |-  ( A. f  e.  B  U_ i  e.  dom  f ( f `
 i )  C_  A  ->  U_ f  e.  B  U_ i  e.  dom  f
( f `  i
)  C_  U_ f  e.  B  A )
7 bnj1145.5 . . . . . . 7  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
87, 4bnj1083 29053 . . . . . 6  |-  ( f  e.  B  <->  E. n ch )
92bnj1095 28858 . . . . . . . . . 10  |-  ( ps 
->  A. i ps )
109, 7bnj1096 28859 . . . . . . . . 9  |-  ( ch 
->  A. i ch )
1110nfi 1557 . . . . . . . 8  |-  F/ i ch
123bnj1098 28860 . . . . . . . . . . . . . . . . 17  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  n  /\  i  =  suc  j ) )
137bnj1232 28881 . . . . . . . . . . . . . . . . . 18  |-  ( ch 
->  n  e.  D
)
14133anim3i 1141 . . . . . . . . . . . . . . . . 17  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )
1512, 14bnj1101 28861 . . . . . . . . . . . . . . . 16  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  (
j  e.  n  /\  i  =  suc  j ) )
16 ancl 530 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  ( j  e.  n  /\  i  =  suc  j ) )  -> 
( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  (
( i  =/=  (/)  /\  i  e.  n  /\  ch )  /\  ( j  e.  n  /\  i  =  suc  j ) ) ) )
1715, 16bnj101 28794 . . . . . . . . . . . . . . 15  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  (
( i  =/=  (/)  /\  i  e.  n  /\  ch )  /\  ( j  e.  n  /\  i  =  suc  j ) ) )
18 bnj1145.6 . . . . . . . . . . . . . . . . 17  |-  ( th  <->  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  /\  ( j  e.  n  /\  i  =  suc  j ) ) )
1918imbi2i 304 . . . . . . . . . . . . . . . 16  |-  ( ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  th )  <->  ( (
i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  /\  (
j  e.  n  /\  i  =  suc  j ) ) ) )
2019exbii 1589 . . . . . . . . . . . . . . 15  |-  ( E. j ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  th )  <->  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  (
( i  =/=  (/)  /\  i  e.  n  /\  ch )  /\  ( j  e.  n  /\  i  =  suc  j ) ) ) )
2117, 20mpbir 201 . . . . . . . . . . . . . 14  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  th )
22 bnj213 28959 . . . . . . . . . . . . . . . 16  |-  pred (
y ,  A ,  R )  C_  A
2322bnj226 28807 . . . . . . . . . . . . . . 15  |-  U_ y  e.  ( f `  j
)  pred ( y ,  A ,  R ) 
C_  A
24 simpr 448 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  n  /\  i  =  suc  j )  ->  i  =  suc  j )
2518, 24bnj833 28833 . . . . . . . . . . . . . . . . . 18  |-  ( th 
->  i  =  suc  j )
26 simp2 958 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  i  e.  n )
27133ad2ant3 980 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  n  e.  D )
283bnj923 28843 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  D  ->  n  e.  om )
29 elnn 4814 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( i  e.  n  /\  n  e.  om )  ->  i  e.  om )
3028, 29sylan2 461 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( i  e.  n  /\  n  e.  D )  ->  i  e.  om )
3126, 27, 30syl2anc 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  i  e.  om )
3218, 31bnj832 28832 . . . . . . . . . . . . . . . . . 18  |-  ( th 
->  i  e.  om )
33 vex 2919 . . . . . . . . . . . . . . . . . . . 20  |-  j  e. 
_V
3433bnj216 28805 . . . . . . . . . . . . . . . . . . 19  |-  ( i  =  suc  j  -> 
j  e.  i )
35 elnn 4814 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  i  /\  i  e.  om )  ->  j  e.  om )
3634, 35sylan 458 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  =  suc  j  /\  i  e.  om )  ->  j  e.  om )
3725, 32, 36syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( th 
->  j  e.  om )
3818, 26bnj832 28832 . . . . . . . . . . . . . . . . . 18  |-  ( th 
->  i  e.  n
)
3925, 38eqeltrrd 2479 . . . . . . . . . . . . . . . . 17  |-  ( th 
->  suc  j  e.  n
)
402bnj589 28986 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ps  <->  A. j  e.  om  ( suc  j  e.  n  ->  ( f `  suc  j )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R ) ) )
4140biimpi 187 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ps 
->  A. j  e.  om  ( suc  j  e.  n  ->  ( f `  suc  j )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R ) ) )
4241bnj708 28830 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps )  ->  A. j  e.  om  ( suc  j  e.  n  ->  ( f `
 suc  j )  =  U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) ) )
43 rsp 2726 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. j  e.  om  ( suc  j  e.  n  ->  ( f `  suc  j )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R ) )  -> 
( j  e.  om  ->  ( suc  j  e.  n  ->  ( f `  suc  j )  = 
U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) ) ) )
4442, 43syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps )  ->  (
j  e.  om  ->  ( suc  j  e.  n  ->  ( f `  suc  j )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R ) ) ) )
457, 44sylbi 188 . . . . . . . . . . . . . . . . . . 19  |-  ( ch 
->  ( j  e.  om  ->  ( suc  j  e.  n  ->  ( f `  suc  j )  = 
U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) ) ) )
46453ad2ant3 980 . . . . . . . . . . . . . . . . . 18  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  ( j  e.  om  ->  ( suc  j  e.  n  ->  ( f `  suc  j )  = 
U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) ) ) )
4718, 46bnj832 28832 . . . . . . . . . . . . . . . . 17  |-  ( th 
->  ( j  e.  om  ->  ( suc  j  e.  n  ->  ( f `  suc  j )  = 
U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) ) ) )
4837, 39, 47mp2d 43 . . . . . . . . . . . . . . . 16  |-  ( th 
->  ( f `  suc  j )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R ) )
49 fveq2 5687 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  suc  j  -> 
( f `  i
)  =  ( f `
 suc  j )
)
5049eqeq1d 2412 . . . . . . . . . . . . . . . . 17  |-  ( i  =  suc  j  -> 
( ( f `  i )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R )  <->  ( f `  suc  j )  = 
U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) ) )
5125, 50syl 16 . . . . . . . . . . . . . . . 16  |-  ( th 
->  ( ( f `  i )  =  U_ y  e.  ( f `  j )  pred (
y ,  A ,  R )  <->  ( f `  suc  j )  = 
U_ y  e.  ( f `  j ) 
pred ( y ,  A ,  R ) ) )
5248, 51mpbird 224 . . . . . . . . . . . . . . 15  |-  ( th 
->  ( f `  i
)  =  U_ y  e.  ( f `  j
)  pred ( y ,  A ,  R ) )
5323, 52bnj1262 28888 . . . . . . . . . . . . . 14  |-  ( th 
->  ( f `  i
)  C_  A )
5421, 53bnj1023 28857 . . . . . . . . . . . . 13  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  (
f `  i )  C_  A )
55 3anass 940 . . . . . . . . . . . . . . 15  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  <->  ( i  =/=  (/)  /\  (
i  e.  n  /\  ch ) ) )
5655imbi1i 316 . . . . . . . . . . . . . 14  |-  ( ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  ( f `  i
)  C_  A )  <->  ( ( i  =/=  (/)  /\  (
i  e.  n  /\  ch ) )  ->  (
f `  i )  C_  A ) )
5756exbii 1589 . . . . . . . . . . . . 13  |-  ( E. j ( ( i  =/=  (/)  /\  i  e.  n  /\  ch )  ->  ( f `  i
)  C_  A )  <->  E. j ( ( i  =/=  (/)  /\  ( i  e.  n  /\  ch ) )  ->  (
f `  i )  C_  A ) )
5854, 57mpbi 200 . . . . . . . . . . . 12  |-  E. j
( ( i  =/=  (/)  /\  ( i  e.  n  /\  ch )
)  ->  ( f `  i )  C_  A
)
591biimpi 187 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
607, 59bnj771 28839 . . . . . . . . . . . . . 14  |-  ( ch 
->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
61 fveq2 5687 . . . . . . . . . . . . . . 15  |-  ( i  =  (/)  ->  ( f `
 i )  =  ( f `  (/) ) )
62 bnj213 28959 . . . . . . . . . . . . . . . 16  |-  pred ( X ,  A ,  R )  C_  A
63 sseq1 3329 . . . . . . . . . . . . . . . 16  |-  ( ( f `  (/) )  = 
pred ( X ,  A ,  R )  ->  ( ( f `  (/) )  C_  A  <->  pred ( X ,  A ,  R
)  C_  A )
)
6462, 63mpbiri 225 . . . . . . . . . . . . . . 15  |-  ( ( f `  (/) )  = 
pred ( X ,  A ,  R )  ->  ( f `  (/) )  C_  A )
65 sseq1 3329 . . . . . . . . . . . . . . . 16  |-  ( ( f `  i )  =  ( f `  (/) )  ->  ( (
f `  i )  C_  A  <->  ( f `  (/) )  C_  A )
)
6665biimpar 472 . . . . . . . . . . . . . . 15  |-  ( ( ( f `  i
)  =  ( f `
 (/) )  /\  (
f `  (/) )  C_  A )  ->  (
f `  i )  C_  A )
6761, 64, 66syl2an 464 . . . . . . . . . . . . . 14  |-  ( ( i  =  (/)  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )
)  ->  ( f `  i )  C_  A
)
6860, 67sylan2 461 . . . . . . . . . . . . 13  |-  ( ( i  =  (/)  /\  ch )  ->  ( f `  i )  C_  A
)
6968adantrl 697 . . . . . . . . . . . 12  |-  ( ( i  =  (/)  /\  (
i  e.  n  /\  ch ) )  ->  (
f `  i )  C_  A )
7058, 69bnj1109 28863 . . . . . . . . . . 11  |-  E. j
( ( i  e.  n  /\  ch )  ->  ( f `  i
)  C_  A )
71 19.9v 1672 . . . . . . . . . . 11  |-  ( E. j ( ( i  e.  n  /\  ch )  ->  ( f `  i )  C_  A
)  <->  ( ( i  e.  n  /\  ch )  ->  ( f `  i )  C_  A
) )
7270, 71mpbi 200 . . . . . . . . . 10  |-  ( ( i  e.  n  /\  ch )  ->  ( f `
 i )  C_  A )
7372expcom 425 . . . . . . . . 9  |-  ( ch 
->  ( i  e.  n  ->  ( f `  i
)  C_  A )
)
74 fndm 5503 . . . . . . . . . . 11  |-  ( f  Fn  n  ->  dom  f  =  n )
757, 74bnj770 28838 . . . . . . . . . 10  |-  ( ch 
->  dom  f  =  n )
76 eleq2 2465 . . . . . . . . . . 11  |-  ( dom  f  =  n  -> 
( i  e.  dom  f 
<->  i  e.  n ) )
7776imbi1d 309 . . . . . . . . . 10  |-  ( dom  f  =  n  -> 
( ( i  e. 
dom  f  ->  (
f `  i )  C_  A )  <->  ( i  e.  n  ->  ( f `
 i )  C_  A ) ) )
7875, 77syl 16 . . . . . . . . 9  |-  ( ch 
->  ( ( i  e. 
dom  f  ->  (
f `  i )  C_  A )  <->  ( i  e.  n  ->  ( f `
 i )  C_  A ) ) )
7973, 78mpbird 224 . . . . . . . 8  |-  ( ch 
->  ( i  e.  dom  f  ->  ( f `  i )  C_  A
) )
8011, 79ralrimi 2747 . . . . . . 7  |-  ( ch 
->  A. i  e.  dom  f ( f `  i )  C_  A
)
8180exlimiv 1641 . . . . . 6  |-  ( E. n ch  ->  A. i  e.  dom  f ( f `
 i )  C_  A )
828, 81sylbi 188 . . . . 5  |-  ( f  e.  B  ->  A. i  e.  dom  f ( f `
 i )  C_  A )
83 ss2iun 4068 . . . . . 6  |-  ( A. i  e.  dom  f ( f `  i ) 
C_  A  ->  U_ i  e.  dom  f ( f `
 i )  C_  U_ i  e.  dom  f  A )
84 bnj1143 28867 . . . . . 6  |-  U_ i  e.  dom  f  A  C_  A
8583, 84syl6ss 3320 . . . . 5  |-  ( A. i  e.  dom  f ( f `  i ) 
C_  A  ->  U_ i  e.  dom  f ( f `
 i )  C_  A )
8682, 85syl 16 . . . 4  |-  ( f  e.  B  ->  U_ i  e.  dom  f ( f `
 i )  C_  A )
876, 86mprg 2735 . . 3  |-  U_ f  e.  B  U_ i  e. 
dom  f ( f `
 i )  C_  U_ f  e.  B  A
884bnj1317 28899 . . . 4  |-  ( w  e.  B  ->  A. f  w  e.  B )
8988bnj1146 28868 . . 3  |-  U_ f  e.  B  A  C_  A
9087, 89sstri 3317 . 2  |-  U_ f  e.  B  U_ i  e. 
dom  f ( f `
 i )  C_  A
915, 90eqsstri 3338 1  |-  trCl ( X ,  A ,  R )  C_  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1721   {cab 2390    =/= wne 2567   A.wral 2666   E.wrex 2667    \ cdif 3277    C_ wss 3280   (/)c0 3588   {csn 3774   U_ciun 4053   suc csuc 4543   omcom 4804   dom cdm 4837    Fn wfn 5408   ` cfv 5413    /\ w-bnj17 28756    predc-bnj14 28758    trClc-bnj18 28764
This theorem is referenced by:  bnj1147  29069
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-tr 4263  df-eprel 4454  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-iota 5377  df-fn 5416  df-fv 5421  df-bnj17 28757  df-bnj14 28759  df-bnj18 28765
  Copyright terms: Public domain W3C validator