Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1143 Structured version   Visualization version   Unicode version

Theorem bnj1143 29674
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1143  |-  U_ x  e.  A  B  C_  B
Distinct variable groups:    x, A    x, B

Proof of Theorem bnj1143
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iun 4271 . . . 4  |-  U_ x  e.  A  B  =  { y  |  E. x  e.  A  y  e.  B }
2 notnot 297 . . . . . . . 8  |-  ( A  =  (/)  <->  -.  -.  A  =  (/) )
3 neq0 3733 . . . . . . . 8  |-  ( -.  A  =  (/)  <->  E. x  x  e.  A )
42, 3xchbinx 317 . . . . . . 7  |-  ( A  =  (/)  <->  -.  E. x  x  e.  A )
5 df-rex 2762 . . . . . . . . 9  |-  ( E. x  e.  A  z  e.  B  <->  E. x
( x  e.  A  /\  z  e.  B
) )
6 exsimpl 1737 . . . . . . . . 9  |-  ( E. x ( x  e.  A  /\  z  e.  B )  ->  E. x  x  e.  A )
75, 6sylbi 200 . . . . . . . 8  |-  ( E. x  e.  A  z  e.  B  ->  E. x  x  e.  A )
87con3i 142 . . . . . . 7  |-  ( -. 
E. x  x  e.  A  ->  -.  E. x  e.  A  z  e.  B )
94, 8sylbi 200 . . . . . 6  |-  ( A  =  (/)  ->  -.  E. x  e.  A  z  e.  B )
109alrimiv 1781 . . . . 5  |-  ( A  =  (/)  ->  A. z  -.  E. x  e.  A  z  e.  B )
11 notnot 297 . . . . . . 7  |-  ( { y  |  E. x  e.  A  y  e.  B }  =  (/)  <->  -.  -.  {
y  |  E. x  e.  A  y  e.  B }  =  (/) )
12 neq0 3733 . . . . . . . 8  |-  ( -. 
U_ x  e.  A  B  =  (/)  <->  E. z 
z  e.  U_ x  e.  A  B )
131eqeq1i 2476 . . . . . . . . 9  |-  ( U_ x  e.  A  B  =  (/)  <->  { y  |  E. x  e.  A  y  e.  B }  =  (/) )
1413notbii 303 . . . . . . . 8  |-  ( -. 
U_ x  e.  A  B  =  (/)  <->  -.  { y  |  E. x  e.  A  y  e.  B }  =  (/) )
15 df-iun 4271 . . . . . . . . . 10  |-  U_ x  e.  A  B  =  { z  |  E. x  e.  A  z  e.  B }
1615eleq2i 2541 . . . . . . . . 9  |-  ( z  e.  U_ x  e.  A  B  <->  z  e.  { z  |  E. x  e.  A  z  e.  B } )
1716exbii 1726 . . . . . . . 8  |-  ( E. z  z  e.  U_ x  e.  A  B  <->  E. z  z  e.  {
z  |  E. x  e.  A  z  e.  B } )
1812, 14, 173bitr3i 283 . . . . . . 7  |-  ( -. 
{ y  |  E. x  e.  A  y  e.  B }  =  (/)  <->  E. z  z  e.  { z  |  E. x  e.  A  z  e.  B } )
1911, 18xchbinx 317 . . . . . 6  |-  ( { y  |  E. x  e.  A  y  e.  B }  =  (/)  <->  -.  E. z 
z  e.  { z  |  E. x  e.  A  z  e.  B } )
20 alnex 1673 . . . . . 6  |-  ( A. z  -.  z  e.  {
z  |  E. x  e.  A  z  e.  B }  <->  -.  E. z 
z  e.  { z  |  E. x  e.  A  z  e.  B } )
21 abid 2459 . . . . . . . 8  |-  ( z  e.  { z  |  E. x  e.  A  z  e.  B }  <->  E. x  e.  A  z  e.  B )
2221notbii 303 . . . . . . 7  |-  ( -.  z  e.  { z  |  E. x  e.  A  z  e.  B } 
<->  -.  E. x  e.  A  z  e.  B
)
2322albii 1699 . . . . . 6  |-  ( A. z  -.  z  e.  {
z  |  E. x  e.  A  z  e.  B }  <->  A. z  -.  E. x  e.  A  z  e.  B )
2419, 20, 233bitr2i 281 . . . . 5  |-  ( { y  |  E. x  e.  A  y  e.  B }  =  (/)  <->  A. z  -.  E. x  e.  A  z  e.  B )
2510, 24sylibr 217 . . . 4  |-  ( A  =  (/)  ->  { y  |  E. x  e.  A  y  e.  B }  =  (/) )
261, 25syl5eq 2517 . . 3  |-  ( A  =  (/)  ->  U_ x  e.  A  B  =  (/) )
27 0ss 3766 . . 3  |-  (/)  C_  B
2826, 27syl6eqss 3468 . 2  |-  ( A  =  (/)  ->  U_ x  e.  A  B  C_  B
)
29 iunconst 4278 . . 3  |-  ( A  =/=  (/)  ->  U_ x  e.  A  B  =  B )
30 eqimss 3470 . . 3  |-  ( U_ x  e.  A  B  =  B  ->  U_ x  e.  A  B  C_  B
)
3129, 30syl 17 . 2  |-  ( A  =/=  (/)  ->  U_ x  e.  A  B  C_  B
)
3228, 31pm2.61ine 2726 1  |-  U_ x  e.  A  B  C_  B
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 376   A.wal 1450    = wceq 1452   E.wex 1671    e. wcel 1904   {cab 2457    =/= wne 2641   E.wrex 2757    C_ wss 3390   (/)c0 3722   U_ciun 4269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-v 3033  df-dif 3393  df-in 3397  df-ss 3404  df-nul 3723  df-iun 4271
This theorem is referenced by:  bnj1146  29675  bnj1145  29874  bnj1136  29878
  Copyright terms: Public domain W3C validator