Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1131 Structured version   Unicode version

Theorem bnj1131 34232
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1131.1  |-  ( ph  ->  A. x ph )
bnj1131.2  |-  E. x ph
Assertion
Ref Expression
bnj1131  |-  ph

Proof of Theorem bnj1131
StepHypRef Expression
1 bnj1131.2 . 2  |-  E. x ph
2 bnj1131.1 . . 3  |-  ( ph  ->  A. x ph )
3219.9h 1911 . 2  |-  ( E. x ph  <->  ph )
41, 3mpbi 208 1  |-  ph
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1397   E.wex 1627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-10 1855  ax-12 1872
This theorem depends on definitions:  df-bi 185  df-ex 1628  df-nf 1632
This theorem is referenced by:  bnj1468  34290  bnj1014  34404  bnj1128  34432
  Copyright terms: Public domain W3C validator