Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj110 Structured version   Unicode version

Theorem bnj110 33013
Description: Well-founded induction restricted to a set ( A  e.  _V). The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj110.1  |-  A  e. 
_V
bnj110.2  |-  ( ps  <->  A. y  e.  A  ( y R x  ->  [. y  /  x ]. ph ) )
Assertion
Ref Expression
bnj110  |-  ( ( R  Fr  A  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  A. x  e.  A  ph )
Distinct variable groups:    x, A, y    x, R, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)

Proof of Theorem bnj110
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralnex 2910 . . . . 5  |-  ( A. z  e.  { x  e.  A  |  -.  ph }  -.  [. z  /  x ]. ph  <->  -.  E. z  e.  { x  e.  A  |  -.  ph } [. z  /  x ]. ph )
2 vex 3116 . . . . . . . 8  |-  z  e. 
_V
3 sbcng 3372 . . . . . . . 8  |-  ( z  e.  _V  ->  ( [. z  /  x ].  -.  ph  <->  -.  [. z  /  x ]. ph ) )
42, 3ax-mp 5 . . . . . . 7  |-  ( [. z  /  x ].  -.  ph  <->  -. 
[. z  /  x ]. ph )
54bicomi 202 . . . . . 6  |-  ( -. 
[. z  /  x ]. ph  <->  [. z  /  x ].  -.  ph )
65ralbii 2895 . . . . 5  |-  ( A. z  e.  { x  e.  A  |  -.  ph }  -.  [. z  /  x ]. ph  <->  A. z  e.  { x  e.  A  |  -.  ph } [. z  /  x ].  -.  ph )
71, 6bitr3i 251 . . . 4  |-  ( -. 
E. z  e.  {
x  e.  A  |  -.  ph } [. z  /  x ]. ph  <->  A. z  e.  { x  e.  A  |  -.  ph } [. z  /  x ].  -.  ph )
8 df-rab 2823 . . . . . . 7  |-  { x  e.  A  |  -.  ph }  =  { x  |  ( x  e.  A  /\  -.  ph ) }
98eleq2i 2545 . . . . . 6  |-  ( z  e.  { x  e.  A  |  -.  ph } 
<->  z  e.  { x  |  ( x  e.  A  /\  -.  ph ) } )
10 df-sbc 3332 . . . . . . 7  |-  ( [. z  /  x ]. (
x  e.  A  /\  -.  ph )  <->  z  e.  { x  |  ( x  e.  A  /\  -.  ph ) } )
11 sbcan 3374 . . . . . . . 8  |-  ( [. z  /  x ]. (
x  e.  A  /\  -.  ph )  <->  ( [. z  /  x ]. x  e.  A  /\  [. z  /  x ].  -.  ph ) )
12 sbcel1v 3396 . . . . . . . . 9  |-  ( [. z  /  x ]. x  e.  A  <->  z  e.  A
)
1312anbi1i 695 . . . . . . . 8  |-  ( (
[. z  /  x ]. x  e.  A  /\  [. z  /  x ].  -.  ph )  <->  ( z  e.  A  /\  [. z  /  x ].  -.  ph ) )
1411, 13bitri 249 . . . . . . 7  |-  ( [. z  /  x ]. (
x  e.  A  /\  -.  ph )  <->  ( z  e.  A  /\  [. z  /  x ].  -.  ph ) )
1510, 14bitr3i 251 . . . . . 6  |-  ( z  e.  { x  |  ( x  e.  A  /\  -.  ph ) }  <-> 
( z  e.  A  /\  [. z  /  x ].  -.  ph ) )
169, 15bitri 249 . . . . 5  |-  ( z  e.  { x  e.  A  |  -.  ph } 
<->  ( z  e.  A  /\  [. z  /  x ].  -.  ph ) )
1716simprbi 464 . . . 4  |-  ( z  e.  { x  e.  A  |  -.  ph }  ->  [. z  /  x ].  -.  ph )
187, 17mprgbir 2828 . . 3  |-  -.  E. z  e.  { x  e.  A  |  -.  ph } [. z  /  x ]. ph
19 bnj110.1 . . . . . . . . 9  |-  A  e. 
_V
2019rabex 4598 . . . . . . . 8  |-  { x  e.  A  |  -.  ph }  e.  _V
2120biantrur 506 . . . . . . 7  |-  ( R  Fr  A  <->  ( {
x  e.  A  |  -.  ph }  e.  _V  /\  R  Fr  A ) )
22 rexnal 2912 . . . . . . . 8  |-  ( E. x  e.  A  -.  ph  <->  -. 
A. x  e.  A  ph )
23 rabn0 3805 . . . . . . . . 9  |-  ( { x  e.  A  |  -.  ph }  =/=  (/)  <->  E. x  e.  A  -.  ph )
24 ssrab2 3585 . . . . . . . . . 10  |-  { x  e.  A  |  -.  ph }  C_  A
2524biantrur 506 . . . . . . . . 9  |-  ( { x  e.  A  |  -.  ph }  =/=  (/)  <->  ( {
x  e.  A  |  -.  ph }  C_  A  /\  { x  e.  A  |  -.  ph }  =/=  (/) ) )
2623, 25bitr3i 251 . . . . . . . 8  |-  ( E. x  e.  A  -.  ph  <->  ( { x  e.  A  |  -.  ph }  C_  A  /\  { x  e.  A  |  -.  ph }  =/=  (/) ) )
2722, 26bitr3i 251 . . . . . . 7  |-  ( -. 
A. x  e.  A  ph  <->  ( { x  e.  A  |  -.  ph }  C_  A  /\  { x  e.  A  |  -.  ph }  =/=  (/) ) )
28 fri 4841 . . . . . . 7  |-  ( ( ( { x  e.  A  |  -.  ph }  e.  _V  /\  R  Fr  A )  /\  ( { x  e.  A  |  -.  ph }  C_  A  /\  { x  e.  A  |  -.  ph }  =/=  (/) ) )  ->  E. z  e.  { x  e.  A  |  -.  ph } A. w  e. 
{ x  e.  A  |  -.  ph }  -.  w R z )
2921, 27, 28syl2anb 479 . . . . . 6  |-  ( ( R  Fr  A  /\  -.  A. x  e.  A  ph )  ->  E. z  e.  { x  e.  A  |  -.  ph } A. w  e.  { x  e.  A  |  -.  ph }  -.  w R z )
30 eqid 2467 . . . . . . . 8  |-  { x  e.  A  |  -.  ph }  =  { x  e.  A  |  -.  ph }
3130bnj23 32869 . . . . . . 7  |-  ( A. w  e.  { x  e.  A  |  -.  ph }  -.  w R z  ->  A. y  e.  A  ( y R z  ->  [. y  /  x ]. ph )
)
32 df-ral 2819 . . . . . . . . . 10  |-  ( A. y  e.  A  (
y R x  ->  [. y  /  x ]. ph )  <->  A. y
( y  e.  A  ->  ( y R x  ->  [. y  /  x ]. ph ) ) )
3332sbcbii 3391 . . . . . . . . 9  |-  ( [. z  /  x ]. A. y  e.  A  (
y R x  ->  [. y  /  x ]. ph )  <->  [. z  /  x ]. A. y ( y  e.  A  -> 
( y R x  ->  [. y  /  x ]. ph ) ) )
34 sbcal 3383 . . . . . . . . . 10  |-  ( [. z  /  x ]. A. y ( y  e.  A  ->  ( y R x  ->  [. y  /  x ]. ph )
)  <->  A. y [. z  /  x ]. ( y  e.  A  ->  (
y R x  ->  [. y  /  x ]. ph ) ) )
35 sbcimg 3373 . . . . . . . . . . . . 13  |-  ( z  e.  _V  ->  ( [. z  /  x ]. ( y  e.  A  ->  ( y R x  ->  [. y  /  x ]. ph ) )  <->  ( [. z  /  x ]. y  e.  A  ->  [. z  /  x ]. ( y R x  ->  [. y  /  x ]. ph )
) ) )
362, 35ax-mp 5 . . . . . . . . . . . 12  |-  ( [. z  /  x ]. (
y  e.  A  -> 
( y R x  ->  [. y  /  x ]. ph ) )  <->  ( [. z  /  x ]. y  e.  A  ->  [. z  /  x ]. ( y R x  ->  [. y  /  x ]. ph )
) )
37 nfv 1683 . . . . . . . . . . . . . . 15  |-  F/ x  y  e.  A
3837sbcgf 3403 . . . . . . . . . . . . . 14  |-  ( z  e.  _V  ->  ( [. z  /  x ]. y  e.  A  <->  y  e.  A ) )
392, 38ax-mp 5 . . . . . . . . . . . . 13  |-  ( [. z  /  x ]. y  e.  A  <->  y  e.  A
)
40 sbcimg 3373 . . . . . . . . . . . . . . 15  |-  ( z  e.  _V  ->  ( [. z  /  x ]. ( y R x  ->  [. y  /  x ]. ph )  <->  ( [. z  /  x ]. y R x  ->  [. z  /  x ]. [. y  /  x ]. ph )
) )
412, 40ax-mp 5 . . . . . . . . . . . . . 14  |-  ( [. z  /  x ]. (
y R x  ->  [. y  /  x ]. ph )  <->  ( [. z  /  x ]. y R x  ->  [. z  /  x ]. [. y  /  x ]. ph )
)
42 sbcbr2g 4503 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  _V  ->  ( [. z  /  x ]. y R x  <->  y R [_ z  /  x ]_ x ) )
432, 42ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( [. z  /  x ]. y R x  <->  y R [_ z  /  x ]_ x
)
44 csbvarg 3848 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  _V  ->  [_ z  /  x ]_ x  =  z )
452, 44ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  [_ z  /  x ]_ x  =  z
4645breq2i 4455 . . . . . . . . . . . . . . . 16  |-  ( y R [_ z  /  x ]_ x  <->  y R
z )
4743, 46bitri 249 . . . . . . . . . . . . . . 15  |-  ( [. z  /  x ]. y R x  <->  y R z )
48 nfsbc1v 3351 . . . . . . . . . . . . . . . . 17  |-  F/ x [. y  /  x ]. ph
4948sbcgf 3403 . . . . . . . . . . . . . . . 16  |-  ( z  e.  _V  ->  ( [. z  /  x ]. [. y  /  x ]. ph  <->  [. y  /  x ]. ph ) )
502, 49ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( [. z  /  x ]. [. y  /  x ]. ph  <->  [. y  /  x ]. ph )
5147, 50imbi12i 326 . . . . . . . . . . . . . 14  |-  ( (
[. z  /  x ]. y R x  ->  [. z  /  x ]. [. y  /  x ]. ph )  <->  ( y R z  ->  [. y  /  x ]. ph )
)
5241, 51bitri 249 . . . . . . . . . . . . 13  |-  ( [. z  /  x ]. (
y R x  ->  [. y  /  x ]. ph )  <->  ( y R z  ->  [. y  /  x ]. ph )
)
5339, 52imbi12i 326 . . . . . . . . . . . 12  |-  ( (
[. z  /  x ]. y  e.  A  ->  [. z  /  x ]. ( y R x  ->  [. y  /  x ]. ph ) )  <->  ( y  e.  A  ->  ( y R z  ->  [. y  /  x ]. ph )
) )
5436, 53bitri 249 . . . . . . . . . . 11  |-  ( [. z  /  x ]. (
y  e.  A  -> 
( y R x  ->  [. y  /  x ]. ph ) )  <->  ( y  e.  A  ->  ( y R z  ->  [. y  /  x ]. ph )
) )
5554albii 1620 . . . . . . . . . 10  |-  ( A. y [. z  /  x ]. ( y  e.  A  ->  ( y R x  ->  [. y  /  x ]. ph ) )  <->  A. y
( y  e.  A  ->  ( y R z  ->  [. y  /  x ]. ph ) ) )
5634, 55bitri 249 . . . . . . . . 9  |-  ( [. z  /  x ]. A. y ( y  e.  A  ->  ( y R x  ->  [. y  /  x ]. ph )
)  <->  A. y ( y  e.  A  ->  (
y R z  ->  [. y  /  x ]. ph ) ) )
5733, 56bitri 249 . . . . . . . 8  |-  ( [. z  /  x ]. A. y  e.  A  (
y R x  ->  [. y  /  x ]. ph )  <->  A. y
( y  e.  A  ->  ( y R z  ->  [. y  /  x ]. ph ) ) )
58 bnj110.2 . . . . . . . . 9  |-  ( ps  <->  A. y  e.  A  ( y R x  ->  [. y  /  x ]. ph ) )
5958sbcbii 3391 . . . . . . . 8  |-  ( [. z  /  x ]. ps  <->  [. z  /  x ]. A. y  e.  A  ( y R x  ->  [. y  /  x ]. ph ) )
60 df-ral 2819 . . . . . . . 8  |-  ( A. y  e.  A  (
y R z  ->  [. y  /  x ]. ph )  <->  A. y
( y  e.  A  ->  ( y R z  ->  [. y  /  x ]. ph ) ) )
6157, 59, 603bitr4i 277 . . . . . . 7  |-  ( [. z  /  x ]. ps  <->  A. y  e.  A  ( y R z  ->  [. y  /  x ]. ph ) )
6231, 61sylibr 212 . . . . . 6  |-  ( A. w  e.  { x  e.  A  |  -.  ph }  -.  w R z  ->  [. z  /  x ]. ps )
6329, 62bnj31 32870 . . . . 5  |-  ( ( R  Fr  A  /\  -.  A. x  e.  A  ph )  ->  E. z  e.  { x  e.  A  |  -.  ph } [. z  /  x ]. ps )
64 nfv 1683 . . . . . . . 8  |-  F/ z ( ps  ->  ph )
65 nfsbc1v 3351 . . . . . . . . 9  |-  F/ x [. z  /  x ]. ps
66 nfsbc1v 3351 . . . . . . . . 9  |-  F/ x [. z  /  x ]. ph
6765, 66nfim 1867 . . . . . . . 8  |-  F/ x
( [. z  /  x ]. ps  ->  [. z  /  x ]. ph )
68 sbceq1a 3342 . . . . . . . . 9  |-  ( x  =  z  ->  ( ps 
<-> 
[. z  /  x ]. ps ) )
69 sbceq1a 3342 . . . . . . . . 9  |-  ( x  =  z  ->  ( ph 
<-> 
[. z  /  x ]. ph ) )
7068, 69imbi12d 320 . . . . . . . 8  |-  ( x  =  z  ->  (
( ps  ->  ph )  <->  (
[. z  /  x ]. ps  ->  [. z  /  x ]. ph ) ) )
7164, 67, 70cbvral 3084 . . . . . . 7  |-  ( A. x  e.  A  ( ps  ->  ph )  <->  A. z  e.  A  ( [. z  /  x ]. ps  ->  [. z  /  x ]. ph ) )
72 elrabi 3258 . . . . . . . . 9  |-  ( z  e.  { x  e.  A  |  -.  ph }  ->  z  e.  A
)
7372imim1i 58 . . . . . . . 8  |-  ( ( z  e.  A  -> 
( [. z  /  x ]. ps  ->  [. z  /  x ]. ph ) )  ->  ( z  e. 
{ x  e.  A  |  -.  ph }  ->  (
[. z  /  x ]. ps  ->  [. z  /  x ]. ph ) ) )
7473ralimi2 2854 . . . . . . 7  |-  ( A. z  e.  A  ( [. z  /  x ]. ps  ->  [. z  /  x ]. ph )  ->  A. z  e.  { x  e.  A  |  -.  ph }  ( [. z  /  x ]. ps  ->  [. z  /  x ]. ph ) )
7571, 74sylbi 195 . . . . . 6  |-  ( A. x  e.  A  ( ps  ->  ph )  ->  A. z  e.  { x  e.  A  |  -.  ph }  ( [. z  /  x ]. ps  ->  [. z  /  x ]. ph ) )
76 rexim 2929 . . . . . 6  |-  ( A. z  e.  { x  e.  A  |  -.  ph }  ( [. z  /  x ]. ps  ->  [. z  /  x ]. ph )  ->  ( E. z  e.  { x  e.  A  |  -.  ph } [. z  /  x ]. ps  ->  E. z  e.  { x  e.  A  |  -.  ph } [. z  /  x ]. ph )
)
7775, 76syl 16 . . . . 5  |-  ( A. x  e.  A  ( ps  ->  ph )  ->  ( E. z  e.  { x  e.  A  |  -.  ph } [. z  /  x ]. ps  ->  E. z  e.  { x  e.  A  |  -.  ph } [. z  /  x ]. ph )
)
7863, 77mpan9 469 . . . 4  |-  ( ( ( R  Fr  A  /\  -.  A. x  e.  A  ph )  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  E. z  e.  {
x  e.  A  |  -.  ph } [. z  /  x ]. ph )
7978an32s 802 . . 3  |-  ( ( ( R  Fr  A  /\  A. x  e.  A  ( ps  ->  ph )
)  /\  -.  A. x  e.  A  ph )  ->  E. z  e.  { x  e.  A  |  -.  ph } [. z  /  x ]. ph )
8018, 79mto 176 . 2  |-  -.  (
( R  Fr  A  /\  A. x  e.  A  ( ps  ->  ph )
)  /\  -.  A. x  e.  A  ph )
81 iman 424 . 2  |-  ( ( ( R  Fr  A  /\  A. x  e.  A  ( ps  ->  ph )
)  ->  A. x  e.  A  ph )  <->  -.  (
( R  Fr  A  /\  A. x  e.  A  ( ps  ->  ph )
)  /\  -.  A. x  e.  A  ph ) )
8280, 81mpbir 209 1  |-  ( ( R  Fr  A  /\  A. x  e.  A  ( ps  ->  ph ) )  ->  A. x  e.  A  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1377    = wceq 1379    e. wcel 1767   {cab 2452    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818   _Vcvv 3113   [.wsbc 3331   [_csb 3435    C_ wss 3476   (/)c0 3785   class class class wbr 4447    Fr wfr 4835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-fr 4838
This theorem is referenced by:  bnj157  33014  bnj580  33068  bnj1052  33128  bnj1030  33140  bnj1133  33142
  Copyright terms: Public domain W3C validator