Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1098 Structured version   Unicode version

Theorem bnj1098 33943
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1098.1  |-  D  =  ( om  \  { (/)
} )
Assertion
Ref Expression
bnj1098  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  n  /\  i  =  suc  j ) )
Distinct variable groups:    D, j    i, j    j, n
Allowed substitution hints:    D( i, n)

Proof of Theorem bnj1098
StepHypRef Expression
1 3anrev 984 . . . . . . 7  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  <->  ( n  e.  D  /\  i  e.  n  /\  i  =/=  (/) ) )
2 df-3an 975 . . . . . . 7  |-  ( ( n  e.  D  /\  i  e.  n  /\  i  =/=  (/) )  <->  ( (
n  e.  D  /\  i  e.  n )  /\  i  =/=  (/) ) )
31, 2bitri 249 . . . . . 6  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  <->  ( (
n  e.  D  /\  i  e.  n )  /\  i  =/=  (/) ) )
4 simpr 461 . . . . . . . 8  |-  ( ( n  e.  D  /\  i  e.  n )  ->  i  e.  n )
5 bnj1098.1 . . . . . . . . . 10  |-  D  =  ( om  \  { (/)
} )
65bnj923 33927 . . . . . . . . 9  |-  ( n  e.  D  ->  n  e.  om )
76adantr 465 . . . . . . . 8  |-  ( ( n  e.  D  /\  i  e.  n )  ->  n  e.  om )
8 elnn 6709 . . . . . . . 8  |-  ( ( i  e.  n  /\  n  e.  om )  ->  i  e.  om )
94, 7, 8syl2anc 661 . . . . . . 7  |-  ( ( n  e.  D  /\  i  e.  n )  ->  i  e.  om )
109anim1i 568 . . . . . 6  |-  ( ( ( n  e.  D  /\  i  e.  n
)  /\  i  =/=  (/) )  ->  ( i  e.  om  /\  i  =/=  (/) ) )
113, 10sylbi 195 . . . . 5  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
i  e.  om  /\  i  =/=  (/) ) )
12 nnsuc 6716 . . . . 5  |-  ( ( i  e.  om  /\  i  =/=  (/) )  ->  E. j  e.  om  i  =  suc  j )
1311, 12syl 16 . . . 4  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  E. j  e.  om  i  =  suc  j )
14 df-rex 2813 . . . . . 6  |-  ( E. j  e.  om  i  =  suc  j  <->  E. j
( j  e.  om  /\  i  =  suc  j
) )
1514imbi2i 312 . . . . 5  |-  ( ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  E. j  e.  om  i  =  suc  j )  <->  ( (
i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  E. j
( j  e.  om  /\  i  =  suc  j
) ) )
16 19.37v 1769 . . . . 5  |-  ( E. j ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
j  e.  om  /\  i  =  suc  j ) )  <->  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  E. j
( j  e.  om  /\  i  =  suc  j
) ) )
1715, 16bitr4i 252 . . . 4  |-  ( ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  E. j  e.  om  i  =  suc  j )  <->  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  om  /\  i  =  suc  j ) ) )
1813, 17mpbi 208 . . 3  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  om  /\  i  =  suc  j ) )
19 ancr 549 . . 3  |-  ( ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
j  e.  om  /\  i  =  suc  j ) )  ->  ( (
i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) ) ) )
2018, 19bnj101 33877 . 2  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( (
j  e.  om  /\  i  =  suc  j )  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
) ) )
21 vex 3112 . . . . . 6  |-  j  e. 
_V
2221bnj216 33888 . . . . 5  |-  ( i  =  suc  j  -> 
j  e.  i )
2322ad2antlr 726 . . . 4  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
j  e.  i )
24 simpr2 1003 . . . 4  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
i  e.  n )
25 3simpc 995 . . . . . . 7  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
i  e.  n  /\  n  e.  D )
)
2625ancomd 451 . . . . . 6  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
n  e.  D  /\  i  e.  n )
)
2726adantl 466 . . . . 5  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
( n  e.  D  /\  i  e.  n
) )
28 nnord 6707 . . . . 5  |-  ( n  e.  om  ->  Ord  n )
29 ordtr1 4930 . . . . 5  |-  ( Ord  n  ->  ( (
j  e.  i  /\  i  e.  n )  ->  j  e.  n ) )
3027, 7, 28, 294syl 21 . . . 4  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
( ( j  e.  i  /\  i  e.  n )  ->  j  e.  n ) )
3123, 24, 30mp2and 679 . . 3  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
j  e.  n )
32 simplr 755 . . 3  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
i  =  suc  j
)
3331, 32jca 532 . 2  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
( j  e.  n  /\  i  =  suc  j ) )
3420, 33bnj1023 33940 1  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  n  /\  i  =  suc  j ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395   E.wex 1613    e. wcel 1819    =/= wne 2652   E.wrex 2808    \ cdif 3468   (/)c0 3793   {csn 4032   Ord word 4886   suc csuc 4889   omcom 6699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-tr 4551  df-eprel 4800  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-om 6700
This theorem is referenced by:  bnj1110  34139  bnj1128  34147  bnj1145  34150
  Copyright terms: Public domain W3C validator