Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1098 Structured version   Visualization version   Unicode version

Theorem bnj1098 29601
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1098.1  |-  D  =  ( om  \  { (/)
} )
Assertion
Ref Expression
bnj1098  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  n  /\  i  =  suc  j ) )
Distinct variable groups:    D, j    i, j    j, n
Allowed substitution hints:    D( i, n)

Proof of Theorem bnj1098
StepHypRef Expression
1 3anrev 997 . . . . . . 7  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  <->  ( n  e.  D  /\  i  e.  n  /\  i  =/=  (/) ) )
2 df-3an 988 . . . . . . 7  |-  ( ( n  e.  D  /\  i  e.  n  /\  i  =/=  (/) )  <->  ( (
n  e.  D  /\  i  e.  n )  /\  i  =/=  (/) ) )
31, 2bitri 257 . . . . . 6  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  <->  ( (
n  e.  D  /\  i  e.  n )  /\  i  =/=  (/) ) )
4 simpr 467 . . . . . . . 8  |-  ( ( n  e.  D  /\  i  e.  n )  ->  i  e.  n )
5 bnj1098.1 . . . . . . . . . 10  |-  D  =  ( om  \  { (/)
} )
65bnj923 29585 . . . . . . . . 9  |-  ( n  e.  D  ->  n  e.  om )
76adantr 471 . . . . . . . 8  |-  ( ( n  e.  D  /\  i  e.  n )  ->  n  e.  om )
8 elnn 6690 . . . . . . . 8  |-  ( ( i  e.  n  /\  n  e.  om )  ->  i  e.  om )
94, 7, 8syl2anc 671 . . . . . . 7  |-  ( ( n  e.  D  /\  i  e.  n )  ->  i  e.  om )
109anim1i 576 . . . . . 6  |-  ( ( ( n  e.  D  /\  i  e.  n
)  /\  i  =/=  (/) )  ->  ( i  e.  om  /\  i  =/=  (/) ) )
113, 10sylbi 200 . . . . 5  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
i  e.  om  /\  i  =/=  (/) ) )
12 nnsuc 6697 . . . . 5  |-  ( ( i  e.  om  /\  i  =/=  (/) )  ->  E. j  e.  om  i  =  suc  j )
1311, 12syl 17 . . . 4  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  E. j  e.  om  i  =  suc  j )
14 df-rex 2743 . . . . . 6  |-  ( E. j  e.  om  i  =  suc  j  <->  E. j
( j  e.  om  /\  i  =  suc  j
) )
1514imbi2i 318 . . . . 5  |-  ( ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  E. j  e.  om  i  =  suc  j )  <->  ( (
i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  E. j
( j  e.  om  /\  i  =  suc  j
) ) )
16 19.37v 1830 . . . . 5  |-  ( E. j ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
j  e.  om  /\  i  =  suc  j ) )  <->  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  E. j
( j  e.  om  /\  i  =  suc  j
) ) )
1715, 16bitr4i 260 . . . 4  |-  ( ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  E. j  e.  om  i  =  suc  j )  <->  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  om  /\  i  =  suc  j ) ) )
1813, 17mpbi 213 . . 3  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  om  /\  i  =  suc  j ) )
19 ancr 556 . . 3  |-  ( ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
j  e.  om  /\  i  =  suc  j ) )  ->  ( (
i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) ) ) )
2018, 19bnj101 29535 . 2  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( (
j  e.  om  /\  i  =  suc  j )  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
) ) )
21 vex 3016 . . . . . 6  |-  j  e. 
_V
2221bnj216 29546 . . . . 5  |-  ( i  =  suc  j  -> 
j  e.  i )
2322ad2antlr 738 . . . 4  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
j  e.  i )
24 simpr2 1016 . . . 4  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
i  e.  n )
25 3simpc 1008 . . . . . . 7  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
i  e.  n  /\  n  e.  D )
)
2625ancomd 457 . . . . . 6  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
n  e.  D  /\  i  e.  n )
)
2726adantl 472 . . . . 5  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
( n  e.  D  /\  i  e.  n
) )
28 nnord 6688 . . . . 5  |-  ( n  e.  om  ->  Ord  n )
29 ordtr1 5445 . . . . 5  |-  ( Ord  n  ->  ( (
j  e.  i  /\  i  e.  n )  ->  j  e.  n ) )
3027, 7, 28, 294syl 19 . . . 4  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
( ( j  e.  i  /\  i  e.  n )  ->  j  e.  n ) )
3123, 24, 30mp2and 690 . . 3  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
j  e.  n )
32 simplr 767 . . 3  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
i  =  suc  j
)
3331, 32jca 539 . 2  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
( j  e.  n  /\  i  =  suc  j ) )
3420, 33bnj1023 29598 1  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  n  /\  i  =  suc  j ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    /\ w3a 986    = wceq 1448   E.wex 1667    e. wcel 1891    =/= wne 2622   E.wrex 2738    \ cdif 3369   (/)c0 3699   {csn 3936   Ord word 5401   suc csuc 5404   omcom 6680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1673  ax-4 1686  ax-5 1762  ax-6 1809  ax-7 1855  ax-8 1893  ax-9 1900  ax-10 1919  ax-11 1924  ax-12 1937  ax-13 2092  ax-ext 2432  ax-sep 4497  ax-nul 4506  ax-pr 4612  ax-un 6571
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 987  df-3an 988  df-tru 1451  df-ex 1668  df-nf 1672  df-sb 1802  df-eu 2304  df-mo 2305  df-clab 2439  df-cleq 2445  df-clel 2448  df-nfc 2582  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3015  df-sbc 3236  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-pss 3388  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-tp 3941  df-op 3943  df-uni 4169  df-br 4375  df-opab 4434  df-tr 4470  df-eprel 4723  df-po 4733  df-so 4734  df-fr 4771  df-we 4773  df-ord 5405  df-on 5406  df-lim 5407  df-suc 5408  df-om 6681
This theorem is referenced by:  bnj1110  29797  bnj1128  29805  bnj1145  29808
  Copyright terms: Public domain W3C validator