Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1083 Structured version   Unicode version

Theorem bnj1083 29348
Description: Technical lemma for bnj69 29380. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1083.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj1083.8  |-  K  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
Assertion
Ref Expression
bnj1083  |-  ( f  e.  K  <->  E. n ch )

Proof of Theorem bnj1083
StepHypRef Expression
1 df-rex 2759 . 2  |-  ( E. n  e.  D  ( f  Fn  n  /\  ph 
/\  ps )  <->  E. n
( n  e.  D  /\  ( f  Fn  n  /\  ph  /\  ps )
) )
2 bnj1083.8 . . 3  |-  K  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
32abeq2i 2529 . 2  |-  ( f  e.  K  <->  E. n  e.  D  ( f  Fn  n  /\  ph  /\  ps ) )
4 bnj1083.3 . . . 4  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
5 bnj252 29069 . . . 4  |-  ( ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps )  <->  ( n  e.  D  /\  (
f  Fn  n  /\  ph 
/\  ps ) ) )
64, 5bitri 249 . . 3  |-  ( ch  <->  ( n  e.  D  /\  ( f  Fn  n  /\  ph  /\  ps )
) )
76exbii 1688 . 2  |-  ( E. n ch  <->  E. n
( n  e.  D  /\  ( f  Fn  n  /\  ph  /\  ps )
) )
81, 3, 73bitr4i 277 1  |-  ( f  e.  K  <->  E. n ch )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405   E.wex 1633    e. wcel 1842   {cab 2387   E.wrex 2754    Fn wfn 5563    /\ w-bnj17 29052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-12 1878  ax-ext 2380
This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-rex 2759  df-bnj17 29053
This theorem is referenced by:  bnj1121  29355  bnj1145  29363
  Copyright terms: Public domain W3C validator