Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1083 Structured version   Unicode version

Theorem bnj1083 29348
 Description: Technical lemma for bnj69 29380. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1083.3
bnj1083.8
Assertion
Ref Expression
bnj1083

Proof of Theorem bnj1083
StepHypRef Expression
1 df-rex 2759 . 2
2 bnj1083.8 . . 3
32abeq2i 2529 . 2
4 bnj1083.3 . . . 4
5 bnj252 29069 . . . 4
64, 5bitri 249 . . 3
76exbii 1688 . 2
81, 3, 73bitr4i 277 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wa 367   w3a 974   wceq 1405  wex 1633   wcel 1842  cab 2387  wrex 2754   wfn 5563   w-bnj17 29052 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-12 1878  ax-ext 2380 This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-rex 2759  df-bnj17 29053 This theorem is referenced by:  bnj1121  29355  bnj1145  29363
 Copyright terms: Public domain W3C validator