Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj105 Structured version   Unicode version

Theorem bnj105 33485
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj105  |-  1o  e.  _V

Proof of Theorem bnj105
StepHypRef Expression
1 df1o2 7140 . 2  |-  1o  =  { (/) }
2 p0ex 4620 . 2  |-  { (/) }  e.  _V
31, 2eqeltri 2525 1  |-  1o  e.  _V
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1802   _Vcvv 3093   (/)c0 3767   {csn 4010   1oc1o 7121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-v 3095  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-pw 3995  df-sn 4011  df-suc 4870  df-1o 7128
This theorem is referenced by:  bnj106  33633  bnj118  33634  bnj121  33635  bnj125  33637  bnj130  33639  bnj153  33645
  Copyright terms: Public domain W3C validator