Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1049 Structured version   Unicode version

Theorem bnj1049 33737
 Description: Technical lemma for bnj69 33773. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1049.1
bnj1049.2
Assertion
Ref Expression
bnj1049

Proof of Theorem bnj1049
StepHypRef Expression
1 df-ral 2796 . 2
2 bnj1049.2 . . . . . . 7
32imbi2i 312 . . . . . 6
4 impexp 446 . . . . . 6
53, 4bitr4i 252 . . . . 5
6 bnj1049.1 . . . . . . . . . 10
76simplbi 460 . . . . . . . . 9
87bnj708 33520 . . . . . . . 8
98pm4.71ri 633 . . . . . . 7
109bicomi 202 . . . . . 6
1110imbi1i 325 . . . . 5
125, 11bitri 249 . . . 4
1312, 2bitr4i 252 . . 3
1413albii 1625 . 2
151, 14bitri 249 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369  wal 1379   wcel 1802  wral 2791  cfv 5574   w-bnj17 33446 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616 This theorem depends on definitions:  df-bi 185  df-an 371  df-ral 2796  df-bnj17 33447 This theorem is referenced by:  bnj1052  33738
 Copyright terms: Public domain W3C validator