Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1020 Structured version   Unicode version

Theorem bnj1020 29782
Description: Technical lemma for bnj69 29827. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1020.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj1020.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj1020.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj1020.4  |-  ( th  <->  ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
)  /\  z  e.  pred ( y ,  A ,  R ) ) )
bnj1020.5  |-  ( ta  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
bnj1020.6  |-  ( et  <->  ( i  e.  n  /\  y  e.  ( f `  i ) ) )
bnj1020.7  |-  ( ph'  <->  [. p  /  n ]. ph )
bnj1020.8  |-  ( ps'  <->  [. p  /  n ]. ps )
bnj1020.9  |-  ( ch'  <->  [. p  /  n ]. ch )
bnj1020.10  |-  ( ph"  <->  [. G  / 
f ]. ph' )
bnj1020.11  |-  ( ps"  <->  [. G  / 
f ]. ps' )
bnj1020.12  |-  ( ch"  <->  [. G  / 
f ]. ch' )
bnj1020.13  |-  D  =  ( om  \  { (/)
} )
bnj1020.14  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
bnj1020.15  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
bnj1020.16  |-  G  =  ( f  u.  { <. n ,  C >. } )
bnj1020.26  |-  ( ch"  <->  ( p  e.  D  /\  G  Fn  p  /\  ph"  /\  ps" ) )
Assertion
Ref Expression
bnj1020  |-  ( ( th  /\  ch  /\  et  /\  E. p ta )  ->  pred ( y ,  A ,  R
)  C_  trCl ( X ,  A ,  R
) )
Distinct variable groups:    A, f,
i, m, n, y    A, p, f, i, n, y    D, f, i, n   
i, G, p    R, f, i, m, n, y    R, p    f, X, i, n, y    ch, p    et, p    ph, i    th, p
Allowed substitution hints:    ph( y, z, f, m, n, p)    ps( y, z, f, i, m, n, p)    ch( y, z, f, i, m, n)    th( y, z, f, i, m, n)    ta( y, z, f, i, m, n, p)    et( y,
z, f, i, m, n)    A( z)    B( y, z, f, i, m, n, p)    C( y,
z, f, i, m, n, p)    D( y,
z, m, p)    R( z)    G( y, z, f, m, n)    X( z, m, p)    ph'( y, z, f, i, m, n, p)    ps'( y, z, f, i, m, n, p)    ch'( y, z, f, i, m, n, p)   
ph"( y, z, f, i, m, n, p)    ps"( y, z, f, i, m, n, p)    ch"( y, z, f, i, m, n, p)

Proof of Theorem bnj1020
StepHypRef Expression
1 bnj1019 29599 . . 3  |-  ( E. p ( th  /\  ch  /\  ta  /\  et ) 
<->  ( th  /\  ch  /\  et  /\  E. p ta ) )
2 bnj1020.1 . . . . 5  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
3 bnj1020.2 . . . . 5  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
4 bnj1020.3 . . . . 5  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
5 bnj1020.4 . . . . 5  |-  ( th  <->  ( R  FrSe  A  /\  X  e.  A  /\  y  e.  trCl ( X ,  A ,  R
)  /\  z  e.  pred ( y ,  A ,  R ) ) )
6 bnj1020.5 . . . . 5  |-  ( ta  <->  ( m  e.  om  /\  n  =  suc  m  /\  p  =  suc  n ) )
7 bnj1020.6 . . . . 5  |-  ( et  <->  ( i  e.  n  /\  y  e.  ( f `  i ) ) )
8 bnj1020.7 . . . . 5  |-  ( ph'  <->  [. p  /  n ]. ph )
9 bnj1020.8 . . . . 5  |-  ( ps'  <->  [. p  /  n ]. ps )
10 bnj1020.9 . . . . 5  |-  ( ch'  <->  [. p  /  n ]. ch )
11 bnj1020.10 . . . . 5  |-  ( ph"  <->  [. G  / 
f ]. ph' )
12 bnj1020.11 . . . . 5  |-  ( ps"  <->  [. G  / 
f ]. ps' )
13 bnj1020.12 . . . . 5  |-  ( ch"  <->  [. G  / 
f ]. ch' )
14 bnj1020.13 . . . . 5  |-  D  =  ( om  \  { (/)
} )
15 bnj1020.15 . . . . 5  |-  C  = 
U_ y  e.  ( f `  m ) 
pred ( y ,  A ,  R )
16 bnj1020.16 . . . . 5  |-  G  =  ( f  u.  { <. n ,  C >. } )
17 bnj1020.14 . . . . . . 7  |-  B  =  { f  |  E. n  e.  D  (
f  Fn  n  /\  ph 
/\  ps ) }
182, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 15, 16bnj998 29775 . . . . . 6  |-  ( ( th  /\  ch  /\  ta  /\  et )  ->  ch" )
194, 6, 7, 14, 18bnj1001 29777 . . . . 5  |-  ( ( th  /\  ch  /\  ta  /\  et )  -> 
( ch"  /\  i  e. 
om  /\  suc  i  e.  p ) )
202, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19bnj1006 29778 . . . 4  |-  ( ( th  /\  ch  /\  ta  /\  et )  ->  pred ( y ,  A ,  R )  C_  ( G `  suc  i ) )
2120exlimiv 1770 . . 3  |-  ( E. p ( th  /\  ch  /\  ta  /\  et )  ->  pred ( y ,  A ,  R ) 
C_  ( G `  suc  i ) )
221, 21sylbir 216 . 2  |-  ( ( th  /\  ch  /\  et  /\  E. p ta )  ->  pred ( y ,  A ,  R
)  C_  ( G `  suc  i ) )
23 bnj1020.26 . . 3  |-  ( ch"  <->  ( p  e.  D  /\  G  Fn  p  /\  ph"  /\  ps" ) )
242, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 15, 16, 23, 18, 19bnj1018 29781 . 2  |-  ( ( th  /\  ch  /\  et  /\  E. p ta )  ->  ( G `  suc  i )  C_  trCl ( X ,  A ,  R ) )
2522, 24sstrd 3474 1  |-  ( ( th  /\  ch  /\  et  /\  E. p ta )  ->  pred ( y ,  A ,  R
)  C_  trCl ( X ,  A ,  R
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437   E.wex 1657    e. wcel 1872   {cab 2407   A.wral 2771   E.wrex 2772   [.wsbc 3299    \ cdif 3433    u. cun 3434    C_ wss 3436   (/)c0 3761   {csn 3998   <.cop 4004   U_ciun 4299   suc csuc 5444    Fn wfn 5596   ` cfv 5601   omcom 6706    /\ w-bnj17 29499    predc-bnj14 29501    FrSe w-bnj15 29505    trClc-bnj18 29507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pr 4660  ax-un 6597  ax-reg 8116
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-om 6707  df-bnj17 29500  df-bnj14 29502  df-bnj13 29504  df-bnj15 29506  df-bnj18 29508
This theorem is referenced by:  bnj907  29784
  Copyright terms: Public domain W3C validator