Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj101 Structured version   Unicode version

Theorem bnj101 34123
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj101.1  |-  E. x ph
bnj101.2  |-  ( ph  ->  ps )
Assertion
Ref Expression
bnj101  |-  E. x ps

Proof of Theorem bnj101
StepHypRef Expression
1 bnj101.1 . 2  |-  E. x ph
2 bnj101.2 . 2  |-  ( ph  ->  ps )
31, 2eximii 1666 1  |-  E. x ps
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   E.wex 1620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639
This theorem depends on definitions:  df-bi 185  df-ex 1621
This theorem is referenced by:  bnj1023  34186  bnj1098  34189  bnj1101  34190  bnj1109  34192  bnj1468  34251  bnj907  34370  bnj1110  34385  bnj1118  34387  bnj1128  34393  bnj1145  34396  bnj1172  34404  bnj1174  34406  bnj1176  34408
  Copyright terms: Public domain W3C validator