Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj101 Structured version   Unicode version

Theorem bnj101 31710
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj101.1  |-  E. x ph
bnj101.2  |-  ( ph  ->  ps )
Assertion
Ref Expression
bnj101  |-  E. x ps

Proof of Theorem bnj101
StepHypRef Expression
1 bnj101.1 . 2  |-  E. x ph
2 bnj101.2 . 2  |-  ( ph  ->  ps )
31, 2eximii 1627 1  |-  E. x ps
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   E.wex 1586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602
This theorem depends on definitions:  df-bi 185  df-ex 1587
This theorem is referenced by:  bnj1023  31772  bnj1098  31775  bnj1101  31776  bnj1109  31778  bnj1468  31837  bnj1014  31951  bnj907  31956  bnj1110  31971  bnj1118  31973  bnj1128  31979  bnj1145  31982  bnj1172  31990  bnj1174  31992  bnj1176  31994
  Copyright terms: Public domain W3C validator