MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bndndx Structured version   Unicode version

Theorem bndndx 10783
Description: A bounded real sequence  A (
k ) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008.)
Assertion
Ref Expression
bndndx  |-  ( E. x  e.  RR  A. k  e.  NN  ( A  e.  RR  /\  A  <_  x )  ->  E. k  e.  NN  A  <_  k
)
Distinct variable groups:    x, A    x, k
Allowed substitution hint:    A( k)

Proof of Theorem bndndx
StepHypRef Expression
1 arch 10781 . . . 4  |-  ( x  e.  RR  ->  E. k  e.  NN  x  <  k
)
2 nnre 10532 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  RR )
3 lelttr 9664 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  x  e.  RR  /\  k  e.  RR )  ->  (
( A  <_  x  /\  x  <  k )  ->  A  <  k
) )
4 ltle 9662 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  RR )  ->  ( A  <  k  ->  A  <_  k )
)
543adant2 1010 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  x  e.  RR  /\  k  e.  RR )  ->  ( A  <  k  ->  A  <_  k ) )
63, 5syld 44 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  x  e.  RR  /\  k  e.  RR )  ->  (
( A  <_  x  /\  x  <  k )  ->  A  <_  k
) )
76exp5o 1210 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
x  e.  RR  ->  ( k  e.  RR  ->  ( A  <_  x  ->  ( x  <  k  ->  A  <_  k ) ) ) ) )
87com3l 81 . . . . . . . 8  |-  ( x  e.  RR  ->  (
k  e.  RR  ->  ( A  e.  RR  ->  ( A  <_  x  ->  ( x  <  k  ->  A  <_  k ) ) ) ) )
98imp4b 590 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  RR )  ->  ( ( A  e.  RR  /\  A  <_  x )  ->  (
x  <  k  ->  A  <_  k ) ) )
109com23 78 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  RR )  ->  ( x  <  k  ->  ( ( A  e.  RR  /\  A  <_  x )  ->  A  <_  k ) ) )
112, 10sylan2 474 . . . . 5  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( x  <  k  ->  ( ( A  e.  RR  /\  A  <_  x )  ->  A  <_  k ) ) )
1211reximdva 2931 . . . 4  |-  ( x  e.  RR  ->  ( E. k  e.  NN  x  <  k  ->  E. k  e.  NN  ( ( A  e.  RR  /\  A  <_  x )  ->  A  <_  k ) ) )
131, 12mpd 15 . . 3  |-  ( x  e.  RR  ->  E. k  e.  NN  ( ( A  e.  RR  /\  A  <_  x )  ->  A  <_  k ) )
14 r19.35 3001 . . 3  |-  ( E. k  e.  NN  (
( A  e.  RR  /\  A  <_  x )  ->  A  <_  k )  <->  ( A. k  e.  NN  ( A  e.  RR  /\  A  <_  x )  ->  E. k  e.  NN  A  <_  k ) )
1513, 14sylib 196 . 2  |-  ( x  e.  RR  ->  ( A. k  e.  NN  ( A  e.  RR  /\  A  <_  x )  ->  E. k  e.  NN  A  <_  k ) )
1615rexlimiv 2942 1  |-  ( E. x  e.  RR  A. k  e.  NN  ( A  e.  RR  /\  A  <_  x )  ->  E. k  e.  NN  A  <_  k
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    e. wcel 1762   A.wral 2807   E.wrex 2808   class class class wbr 4440   RRcr 9480    < clt 9617    <_ cle 9618   NNcn 10525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator