MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blssps Structured version   Unicode version

Theorem blssps 21052
Description: Any point  P in a ball  B can be centered in another ball that is a subset of  B. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blssps  |-  ( ( D  e.  (PsMet `  X )  /\  B  e.  ran  ( ball `  D
)  /\  P  e.  B )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  B
)
Distinct variable groups:    x, B    x, D    x, P    x, X

Proof of Theorem blssps
Dummy variables  r 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blrnps 21036 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( B  e.  ran  ( ball `  D
)  <->  E. y  e.  X  E. r  e.  RR*  B  =  ( y (
ball `  D )
r ) ) )
2 elblps 21015 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( P  e.  ( y
( ball `  D )
r )  <->  ( P  e.  X  /\  (
y D P )  <  r ) ) )
3 simpl1 999 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  ->  D  e.  (PsMet `  X )
)
4 simpl2 1000 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  ->  y  e.  X )
5 simpr 461 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  ->  P  e.  X )
6 psmetcl 20936 . . . . . . . . . . 11  |-  ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  P  e.  X )  ->  (
y D P )  e.  RR* )
73, 4, 5, 6syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  ->  (
y D P )  e.  RR* )
8 simpl3 1001 . . . . . . . . . 10  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  ->  r  e.  RR* )
9 qbtwnxr 11424 . . . . . . . . . . 11  |-  ( ( ( y D P )  e.  RR*  /\  r  e.  RR*  /\  ( y D P )  < 
r )  ->  E. z  e.  QQ  ( ( y D P )  < 
z  /\  z  <  r ) )
1093expia 1198 . . . . . . . . . 10  |-  ( ( ( y D P )  e.  RR*  /\  r  e.  RR* )  ->  (
( y D P )  <  r  ->  E. z  e.  QQ  ( ( y D P )  <  z  /\  z  <  r ) ) )
117, 8, 10syl2anc 661 . . . . . . . . 9  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  ->  (
( y D P )  <  r  ->  E. z  e.  QQ  ( ( y D P )  <  z  /\  z  <  r ) ) )
12 qre 11212 . . . . . . . . . . 11  |-  ( z  e.  QQ  ->  z  e.  RR )
13 simpll1 1035 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  D  e.  (PsMet `  X ) )
14 simplr 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  P  e.  X
)
15 simpll2 1036 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  y  e.  X
)
16 psmetsym 20939 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  y  e.  X )  ->  ( P D y )  =  ( y D P ) )
1713, 14, 15, 16syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  =  ( y D P ) )
18 simprrl 765 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( y D P )  <  z
)
1917, 18eqbrtrd 4476 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <  z
)
20 simprl 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  e.  RR )
21 psmetcl 20936 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  y  e.  X )  ->  ( P D y )  e. 
RR* )
2213, 14, 15, 21syl3anc 1228 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  e.  RR* )
23 rexr 9656 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  RR  ->  z  e.  RR* )
2423ad2antrl 727 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  e.  RR* )
25 xrltle 11380 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P D y )  e.  RR*  /\  z  e.  RR* )  ->  (
( P D y )  <  z  -> 
( P D y )  <_  z )
)
2622, 24, 25syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( ( P D y )  < 
z  ->  ( P D y )  <_ 
z ) )
2719, 26mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <_  z
)
28 psmetlecl 20944 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  (PsMet `  X )  /\  ( P  e.  X  /\  y  e.  X )  /\  ( z  e.  RR  /\  ( P D y )  <_  z )
)  ->  ( P D y )  e.  RR )
2913, 14, 15, 20, 27, 28syl122anc 1237 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  e.  RR )
30 difrp 11278 . . . . . . . . . . . . . . 15  |-  ( ( ( P D y )  e.  RR  /\  z  e.  RR )  ->  ( ( P D y )  <  z  <->  ( z  -  ( P D y ) )  e.  RR+ ) )
3129, 20, 30syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( ( P D y )  < 
z  <->  ( z  -  ( P D y ) )  e.  RR+ )
)
3219, 31mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( z  -  ( P D y ) )  e.  RR+ )
3320, 29resubcld 10008 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( z  -  ( P D y ) )  e.  RR )
34 xrleid 11381 . . . . . . . . . . . . . . . . 17  |-  ( ( P D y )  e.  RR*  ->  ( P D y )  <_ 
( P D y ) )
3522, 34syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <_  ( P D y ) )
3620recnd 9639 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  e.  CC )
3729recnd 9639 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  e.  CC )
3836, 37nncand 9955 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( z  -  ( z  -  ( P D y ) ) )  =  ( P D y ) )
3935, 38breqtrrd 4482 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P D y )  <_  (
z  -  ( z  -  ( P D y ) ) ) )
40 blss2ps 21031 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  y  e.  X )  /\  (
( z  -  ( P D y ) )  e.  RR  /\  z  e.  RR  /\  ( P D y )  <_ 
( z  -  (
z  -  ( P D y ) ) ) ) )  -> 
( P ( ball `  D ) ( z  -  ( P D y ) ) ) 
C_  ( y (
ball `  D )
z ) )
4113, 14, 15, 33, 20, 39, 40syl33anc 1243 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P (
ball `  D )
( z  -  ( P D y ) ) )  C_  ( y
( ball `  D )
z ) )
42 simpll3 1037 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  r  e.  RR* )
43 simprrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  <  r
)
44 xrltle 11380 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  RR*  /\  r  e.  RR* )  ->  (
z  <  r  ->  z  <_  r ) )
4524, 42, 44syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( z  < 
r  ->  z  <_  r ) )
4643, 45mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  z  <_  r
)
47 ssblps 21050 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X )  /\  (
z  e.  RR*  /\  r  e.  RR* )  /\  z  <_  r )  ->  (
y ( ball `  D
) z )  C_  ( y ( ball `  D ) r ) )
4813, 15, 24, 42, 46, 47syl221anc 1239 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( y (
ball `  D )
z )  C_  (
y ( ball `  D
) r ) )
4941, 48sstrd 3509 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  ( P (
ball `  D )
( z  -  ( P D y ) ) )  C_  ( y
( ball `  D )
r ) )
50 oveq2 6304 . . . . . . . . . . . . . . 15  |-  ( x  =  ( z  -  ( P D y ) )  ->  ( P
( ball `  D )
x )  =  ( P ( ball `  D
) ( z  -  ( P D y ) ) ) )
5150sseq1d 3526 . . . . . . . . . . . . . 14  |-  ( x  =  ( z  -  ( P D y ) )  ->  ( ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r )  <-> 
( P ( ball `  D ) ( z  -  ( P D y ) ) ) 
C_  ( y (
ball `  D )
r ) ) )
5251rspcev 3210 . . . . . . . . . . . . 13  |-  ( ( ( z  -  ( P D y ) )  e.  RR+  /\  ( P ( ball `  D
) ( z  -  ( P D y ) ) )  C_  (
y ( ball `  D
) r ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) )
5332, 49, 52syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  ( z  e.  RR  /\  ( ( y D P )  <  z  /\  z  <  r ) ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) )
5453expr 615 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  z  e.  RR )  ->  ( ( ( y D P )  <  z  /\  z  <  r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5512, 54sylan2 474 . . . . . . . . . 10  |-  ( ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X
)  /\  z  e.  QQ )  ->  ( ( ( y D P )  <  z  /\  z  <  r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5655rexlimdva 2949 . . . . . . . . 9  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  ->  ( E. z  e.  QQ  ( ( y D P )  <  z  /\  z  <  r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5711, 56syld 44 . . . . . . . 8  |-  ( ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  /\  P  e.  X )  ->  (
( y D P )  <  r  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
5857expimpd 603 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  (
( P  e.  X  /\  ( y D P )  <  r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
592, 58sylbid 215 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( P  e.  ( y
( ball `  D )
r )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  (
y ( ball `  D
) r ) ) )
60 eleq2 2530 . . . . . . 7  |-  ( B  =  ( y (
ball `  D )
r )  ->  ( P  e.  B  <->  P  e.  ( y ( ball `  D ) r ) ) )
61 sseq2 3521 . . . . . . . 8  |-  ( B  =  ( y (
ball `  D )
r )  ->  (
( P ( ball `  D ) x ) 
C_  B  <->  ( P
( ball `  D )
x )  C_  (
y ( ball `  D
) r ) ) )
6261rexbidv 2968 . . . . . . 7  |-  ( B  =  ( y (
ball `  D )
r )  ->  ( E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B 
<->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) )
6360, 62imbi12d 320 . . . . . 6  |-  ( B  =  ( y (
ball `  D )
r )  ->  (
( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B )  <->  ( P  e.  ( y ( ball `  D ) r )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( y ( ball `  D ) r ) ) ) )
6459, 63syl5ibrcom 222 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  y  e.  X  /\  r  e.  RR* )  ->  ( B  =  ( y
( ball `  D )
r )  ->  ( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B ) ) )
65643expib 1199 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  ( (
y  e.  X  /\  r  e.  RR* )  -> 
( B  =  ( y ( ball `  D
) r )  -> 
( P  e.  B  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  B ) ) ) )
6665rexlimdvv 2955 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( E. y  e.  X  E. r  e.  RR*  B  =  ( y ( ball `  D ) r )  ->  ( P  e.  B  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  B
) ) )
671, 66sylbid 215 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ( B  e.  ran  ( ball `  D
)  ->  ( P  e.  B  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  B
) ) )
68673imp 1190 1  |-  ( ( D  e.  (PsMet `  X )  /\  B  e.  ran  ( ball `  D
)  /\  P  e.  B )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   E.wrex 2808    C_ wss 3471   class class class wbr 4456   ran crn 5009   ` cfv 5594  (class class class)co 6296   RRcr 9508   RR*cxr 9644    < clt 9645    <_ cle 9646    - cmin 9824   QQcq 11207   RR+crp 11245  PsMetcpsmet 18528   ballcbl 18531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-psmet 18537  df-bl 18540
This theorem is referenced by:  blssexps  21054
  Copyright terms: Public domain W3C validator