MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blrnps Structured version   Unicode version

Theorem blrnps 20096
Description: Membership in the range of the ball function. Note that  ran  ( ball `  D ) is the collection of all balls for metric 
D. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blrnps  |-  ( D  e.  (PsMet `  X
)  ->  ( A  e.  ran  ( ball `  D
)  <->  E. x  e.  X  E. r  e.  RR*  A  =  ( x (
ball `  D )
r ) ) )
Distinct variable groups:    x, r, A    D, r, x    X, r, x

Proof of Theorem blrnps
StepHypRef Expression
1 blfps 20094 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D ) : ( X  X.  RR* ) --> ~P X )
2 ffn 5654 . 2  |-  ( (
ball `  D ) : ( X  X.  RR* ) --> ~P X  -> 
( ball `  D )  Fn  ( X  X.  RR* ) )
3 ovelrn 6336 . 2  |-  ( (
ball `  D )  Fn  ( X  X.  RR* )  ->  ( A  e. 
ran  ( ball `  D
)  <->  E. x  e.  X  E. r  e.  RR*  A  =  ( x (
ball `  D )
r ) ) )
41, 2, 33syl 20 1  |-  ( D  e.  (PsMet `  X
)  ->  ( A  e.  ran  ( ball `  D
)  <->  E. x  e.  X  E. r  e.  RR*  A  =  ( x (
ball `  D )
r ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1370    e. wcel 1758   E.wrex 2794   ~Pcpw 3955    X. cxp 4933   ran crn 4936    Fn wfn 5508   -->wf 5509   ` cfv 5513  (class class class)co 6187   RR*cxr 9515  PsMetcpsmet 17906   ballcbl 17909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626  ax-un 6469  ax-cnex 9436  ax-resscn 9437
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4187  df-iun 4268  df-br 4388  df-opab 4446  df-mpt 4447  df-id 4731  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-fv 5521  df-ov 6190  df-oprab 6191  df-mpt2 6192  df-1st 6674  df-2nd 6675  df-map 7313  df-xr 9520  df-psmet 17915  df-bl 17918
This theorem is referenced by:  blssps  20112
  Copyright terms: Public domain W3C validator