MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blres Structured version   Unicode version

Theorem blres 21228
Description: A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014.)
Hypothesis
Ref Expression
blres.2  |-  C  =  ( D  |`  ( Y  X.  Y ) )
Assertion
Ref Expression
blres  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( P (
ball `  C ) R )  =  ( ( P ( ball `  D ) R )  i^i  Y ) )

Proof of Theorem blres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 inss2 3662 . . . . . . . . . 10  |-  ( X  i^i  Y )  C_  Y
21sseli 3440 . . . . . . . . 9  |-  ( P  e.  ( X  i^i  Y )  ->  P  e.  Y )
3 blres.2 . . . . . . . . . . 11  |-  C  =  ( D  |`  ( Y  X.  Y ) )
43oveqi 6293 . . . . . . . . . 10  |-  ( P C x )  =  ( P ( D  |`  ( Y  X.  Y
) ) x )
5 ovres 6425 . . . . . . . . . 10  |-  ( ( P  e.  Y  /\  x  e.  Y )  ->  ( P ( D  |`  ( Y  X.  Y
) ) x )  =  ( P D x ) )
64, 5syl5eq 2457 . . . . . . . . 9  |-  ( ( P  e.  Y  /\  x  e.  Y )  ->  ( P C x )  =  ( P D x ) )
72, 6sylan 471 . . . . . . . 8  |-  ( ( P  e.  ( X  i^i  Y )  /\  x  e.  Y )  ->  ( P C x )  =  ( P D x ) )
87breq1d 4407 . . . . . . 7  |-  ( ( P  e.  ( X  i^i  Y )  /\  x  e.  Y )  ->  ( ( P C x )  <  R  <->  ( P D x )  <  R ) )
98anbi2d 704 . . . . . 6  |-  ( ( P  e.  ( X  i^i  Y )  /\  x  e.  Y )  ->  ( ( x  e.  X  /\  ( P C x )  < 
R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
109pm5.32da 641 . . . . 5  |-  ( P  e.  ( X  i^i  Y )  ->  ( (
x  e.  Y  /\  ( x  e.  X  /\  ( P C x )  <  R ) )  <->  ( x  e.  Y  /\  ( x  e.  X  /\  ( P D x )  < 
R ) ) ) )
11103ad2ant2 1021 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( ( x  e.  Y  /\  (
x  e.  X  /\  ( P C x )  <  R ) )  <-> 
( x  e.  Y  /\  ( x  e.  X  /\  ( P D x )  <  R ) ) ) )
12 elin 3628 . . . . . . 7  |-  ( x  e.  ( X  i^i  Y )  <->  ( x  e.  X  /\  x  e.  Y ) )
13 ancom 450 . . . . . . 7  |-  ( ( x  e.  X  /\  x  e.  Y )  <->  ( x  e.  Y  /\  x  e.  X )
)
1412, 13bitri 251 . . . . . 6  |-  ( x  e.  ( X  i^i  Y )  <->  ( x  e.  Y  /\  x  e.  X ) )
1514anbi1i 695 . . . . 5  |-  ( ( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R )  <->  ( (
x  e.  Y  /\  x  e.  X )  /\  ( P C x )  <  R ) )
16 anass 649 . . . . 5  |-  ( ( ( x  e.  Y  /\  x  e.  X
)  /\  ( P C x )  < 
R )  <->  ( x  e.  Y  /\  (
x  e.  X  /\  ( P C x )  <  R ) ) )
1715, 16bitri 251 . . . 4  |-  ( ( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R )  <->  ( x  e.  Y  /\  (
x  e.  X  /\  ( P C x )  <  R ) ) )
18 ancom 450 . . . 4  |-  ( ( ( x  e.  X  /\  ( P D x )  <  R )  /\  x  e.  Y
)  <->  ( x  e.  Y  /\  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
1911, 17, 183bitr4g 290 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( ( x  e.  ( X  i^i  Y )  /\  ( P C x )  < 
R )  <->  ( (
x  e.  X  /\  ( P D x )  <  R )  /\  x  e.  Y )
) )
20 xmetres 21161 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  ( X  i^i  Y ) ) )
213, 20syl5eqel 2496 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  C  e.  ( *Met `  ( X  i^i  Y ) ) )
22 elbl 21185 . . . 4  |-  ( ( C  e.  ( *Met `  ( X  i^i  Y ) )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  C ) R )  <-> 
( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R
) ) )
2321, 22syl3an1 1265 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  C ) R )  <-> 
( x  e.  ( X  i^i  Y )  /\  ( P C x )  <  R
) ) )
24 elin 3628 . . . 4  |-  ( x  e.  ( ( P ( ball `  D
) R )  i^i 
Y )  <->  ( x  e.  ( P ( ball `  D ) R )  /\  x  e.  Y
) )
25 inss1 3661 . . . . . . 7  |-  ( X  i^i  Y )  C_  X
2625sseli 3440 . . . . . 6  |-  ( P  e.  ( X  i^i  Y )  ->  P  e.  X )
27 elbl 21185 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D
) R )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
2826, 27syl3an2 1266 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  D ) R )  <-> 
( x  e.  X  /\  ( P D x )  <  R ) ) )
2928anbi1d 705 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( ( x  e.  ( P (
ball `  D ) R )  /\  x  e.  Y )  <->  ( (
x  e.  X  /\  ( P D x )  <  R )  /\  x  e.  Y )
) )
3024, 29syl5bb 259 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( ( P (
ball `  D ) R )  i^i  Y
)  <->  ( ( x  e.  X  /\  ( P D x )  < 
R )  /\  x  e.  Y ) ) )
3119, 23, 303bitr4d 287 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( x  e.  ( P ( ball `  C ) R )  <-> 
x  e.  ( ( P ( ball `  D
) R )  i^i 
Y ) ) )
3231eqrdv 2401 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  ( X  i^i  Y )  /\  R  e.  RR* )  ->  ( P (
ball `  C ) R )  =  ( ( P ( ball `  D ) R )  i^i  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 186    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844    i^i cin 3415   class class class wbr 4397    X. cxp 4823    |` cres 4827   ` cfv 5571  (class class class)co 6280   RR*cxr 9659    < clt 9660   *Metcxmt 18725   ballcbl 18727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-fv 5579  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-1st 6786  df-2nd 6787  df-map 7461  df-xr 9664  df-psmet 18733  df-xmet 18734  df-bl 18736
This theorem is referenced by:  metrest  21321  xrsmopn  21611  lebnumii  21760  blssp  31544  sstotbnd2  31565  blbnd  31578  ssbnd  31579  iooabslt  36914
  Copyright terms: Public domain W3C validator