MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blometi Structured version   Unicode version

Theorem blometi 26430
Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
blometi.1  |-  X  =  ( BaseSet `  U )
blometi.2  |-  Y  =  ( BaseSet `  W )
blometi.8  |-  C  =  ( IndMet `  U )
blometi.d  |-  D  =  ( IndMet `  W )
blometi.6  |-  N  =  ( U normOpOLD W
)
blometi.7  |-  B  =  ( U  BLnOp  W )
blometi.u  |-  U  e.  NrmCVec
blometi.w  |-  W  e.  NrmCVec
Assertion
Ref Expression
blometi  |-  ( ( T  e.  B  /\  P  e.  X  /\  Q  e.  X )  ->  ( ( T `  P ) D ( T `  Q ) )  <_  ( ( N `  T )  x.  ( P C Q ) ) )

Proof of Theorem blometi
StepHypRef Expression
1 blometi.u . . . . 5  |-  U  e.  NrmCVec
2 blometi.1 . . . . . 6  |-  X  =  ( BaseSet `  U )
3 eqid 2422 . . . . . 6  |-  ( -v
`  U )  =  ( -v `  U
)
42, 3nvmcl 26254 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  P  e.  X  /\  Q  e.  X )  ->  ( P ( -v `  U ) Q )  e.  X )
51, 4mp3an1 1347 . . . 4  |-  ( ( P  e.  X  /\  Q  e.  X )  ->  ( P ( -v
`  U ) Q )  e.  X )
6 eqid 2422 . . . . 5  |-  ( normCV `  U )  =  (
normCV
`  U )
7 eqid 2422 . . . . 5  |-  ( normCV `  W )  =  (
normCV
`  W )
8 blometi.6 . . . . 5  |-  N  =  ( U normOpOLD W
)
9 blometi.7 . . . . 5  |-  B  =  ( U  BLnOp  W )
10 blometi.w . . . . 5  |-  W  e.  NrmCVec
112, 6, 7, 8, 9, 1, 10nmblolbi 26427 . . . 4  |-  ( ( T  e.  B  /\  ( P ( -v `  U ) Q )  e.  X )  -> 
( ( normCV `  W
) `  ( T `  ( P ( -v
`  U ) Q ) ) )  <_ 
( ( N `  T )  x.  (
( normCV `  U ) `  ( P ( -v `  U ) Q ) ) ) )
125, 11sylan2 476 . . 3  |-  ( ( T  e.  B  /\  ( P  e.  X  /\  Q  e.  X
) )  ->  (
( normCV `  W ) `  ( T `  ( P ( -v `  U
) Q ) ) )  <_  ( ( N `  T )  x.  ( ( normCV `  U
) `  ( P
( -v `  U
) Q ) ) ) )
13123impb 1201 . 2  |-  ( ( T  e.  B  /\  P  e.  X  /\  Q  e.  X )  ->  ( ( normCV `  W
) `  ( T `  ( P ( -v
`  U ) Q ) ) )  <_ 
( ( N `  T )  x.  (
( normCV `  U ) `  ( P ( -v `  U ) Q ) ) ) )
14 blometi.2 . . . . . . . 8  |-  Y  =  ( BaseSet `  W )
152, 14, 9blof 26412 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  T : X --> Y )
161, 10, 15mp3an12 1350 . . . . . 6  |-  ( T  e.  B  ->  T : X --> Y )
1716ffvelrnda 6034 . . . . 5  |-  ( ( T  e.  B  /\  P  e.  X )  ->  ( T `  P
)  e.  Y )
18173adant3 1025 . . . 4  |-  ( ( T  e.  B  /\  P  e.  X  /\  Q  e.  X )  ->  ( T `  P
)  e.  Y )
1916ffvelrnda 6034 . . . . 5  |-  ( ( T  e.  B  /\  Q  e.  X )  ->  ( T `  Q
)  e.  Y )
20193adant2 1024 . . . 4  |-  ( ( T  e.  B  /\  P  e.  X  /\  Q  e.  X )  ->  ( T `  Q
)  e.  Y )
21 eqid 2422 . . . . . 6  |-  ( -v
`  W )  =  ( -v `  W
)
22 blometi.d . . . . . 6  |-  D  =  ( IndMet `  W )
2314, 21, 7, 22imsdval 26304 . . . . 5  |-  ( ( W  e.  NrmCVec  /\  ( T `  P )  e.  Y  /\  ( T `  Q )  e.  Y )  ->  (
( T `  P
) D ( T `
 Q ) )  =  ( ( normCV `  W ) `  (
( T `  P
) ( -v `  W ) ( T `
 Q ) ) ) )
2410, 23mp3an1 1347 . . . 4  |-  ( ( ( T `  P
)  e.  Y  /\  ( T `  Q )  e.  Y )  -> 
( ( T `  P ) D ( T `  Q ) )  =  ( (
normCV
`  W ) `  ( ( T `  P ) ( -v
`  W ) ( T `  Q ) ) ) )
2518, 20, 24syl2anc 665 . . 3  |-  ( ( T  e.  B  /\  P  e.  X  /\  Q  e.  X )  ->  ( ( T `  P ) D ( T `  Q ) )  =  ( (
normCV
`  W ) `  ( ( T `  P ) ( -v
`  W ) ( T `  Q ) ) ) )
26 eqid 2422 . . . . . . 7  |-  ( U 
LnOp  W )  =  ( U  LnOp  W )
2726, 9bloln 26411 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  T  e.  ( U  LnOp  W
) )
281, 10, 27mp3an12 1350 . . . . 5  |-  ( T  e.  B  ->  T  e.  ( U  LnOp  W
) )
292, 3, 21, 26lnosub 26386 . . . . . . . 8  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  ( U  LnOp  W
) )  /\  ( P  e.  X  /\  Q  e.  X )
)  ->  ( T `  ( P ( -v
`  U ) Q ) )  =  ( ( T `  P
) ( -v `  W ) ( T `
 Q ) ) )
301, 29mp3anl1 1354 . . . . . . 7  |-  ( ( ( W  e.  NrmCVec  /\  T  e.  ( U  LnOp  W ) )  /\  ( P  e.  X  /\  Q  e.  X
) )  ->  ( T `  ( P
( -v `  U
) Q ) )  =  ( ( T `
 P ) ( -v `  W ) ( T `  Q
) ) )
3110, 30mpanl1 684 . . . . . 6  |-  ( ( T  e.  ( U 
LnOp  W )  /\  ( P  e.  X  /\  Q  e.  X )
)  ->  ( T `  ( P ( -v
`  U ) Q ) )  =  ( ( T `  P
) ( -v `  W ) ( T `
 Q ) ) )
32313impb 1201 . . . . 5  |-  ( ( T  e.  ( U 
LnOp  W )  /\  P  e.  X  /\  Q  e.  X )  ->  ( T `  ( P
( -v `  U
) Q ) )  =  ( ( T `
 P ) ( -v `  W ) ( T `  Q
) ) )
3328, 32syl3an1 1297 . . . 4  |-  ( ( T  e.  B  /\  P  e.  X  /\  Q  e.  X )  ->  ( T `  ( P ( -v `  U ) Q ) )  =  ( ( T `  P ) ( -v `  W
) ( T `  Q ) ) )
3433fveq2d 5882 . . 3  |-  ( ( T  e.  B  /\  P  e.  X  /\  Q  e.  X )  ->  ( ( normCV `  W
) `  ( T `  ( P ( -v
`  U ) Q ) ) )  =  ( ( normCV `  W
) `  ( ( T `  P )
( -v `  W
) ( T `  Q ) ) ) )
3525, 34eqtr4d 2466 . 2  |-  ( ( T  e.  B  /\  P  e.  X  /\  Q  e.  X )  ->  ( ( T `  P ) D ( T `  Q ) )  =  ( (
normCV
`  W ) `  ( T `  ( P ( -v `  U
) Q ) ) ) )
36 blometi.8 . . . . . 6  |-  C  =  ( IndMet `  U )
372, 3, 6, 36imsdval 26304 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  P  e.  X  /\  Q  e.  X )  ->  ( P C Q )  =  ( ( normCV `  U
) `  ( P
( -v `  U
) Q ) ) )
381, 37mp3an1 1347 . . . 4  |-  ( ( P  e.  X  /\  Q  e.  X )  ->  ( P C Q )  =  ( (
normCV
`  U ) `  ( P ( -v `  U ) Q ) ) )
39383adant1 1023 . . 3  |-  ( ( T  e.  B  /\  P  e.  X  /\  Q  e.  X )  ->  ( P C Q )  =  ( (
normCV
`  U ) `  ( P ( -v `  U ) Q ) ) )
4039oveq2d 6318 . 2  |-  ( ( T  e.  B  /\  P  e.  X  /\  Q  e.  X )  ->  ( ( N `  T )  x.  ( P C Q ) )  =  ( ( N `
 T )  x.  ( ( normCV `  U
) `  ( P
( -v `  U
) Q ) ) ) )
4113, 35, 403brtr4d 4451 1  |-  ( ( T  e.  B  /\  P  e.  X  /\  Q  e.  X )  ->  ( ( T `  P ) D ( T `  Q ) )  <_  ( ( N `  T )  x.  ( P C Q ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   class class class wbr 4420   -->wf 5594   ` cfv 5598  (class class class)co 6302    x. cmul 9545    <_ cle 9677   NrmCVeccnv 26189   BaseSetcba 26191   -vcnsb 26194   normCVcnmcv 26195   IndMetcims 26196    LnOp clno 26367   normOpOLDcnmoo 26368    BLnOp cblo 26369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617  ax-pre-sup 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-pred 5396  df-ord 5442  df-on 5443  df-lim 5444  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-om 6704  df-1st 6804  df-2nd 6805  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-er 7368  df-map 7479  df-en 7575  df-dom 7576  df-sdom 7577  df-sup 7959  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-div 10271  df-nn 10611  df-2 10669  df-3 10670  df-n0 10871  df-z 10939  df-uz 11161  df-rp 11304  df-seq 12214  df-exp 12273  df-cj 13151  df-re 13152  df-im 13153  df-sqrt 13287  df-abs 13288  df-grpo 25905  df-gid 25906  df-ginv 25907  df-gdiv 25908  df-ablo 25996  df-vc 26151  df-nv 26197  df-va 26200  df-ba 26201  df-sm 26202  df-0v 26203  df-vs 26204  df-nmcv 26205  df-ims 26206  df-lno 26371  df-nmoo 26372  df-blo 26373  df-0o 26374
This theorem is referenced by:  blocni  26432
  Copyright terms: Public domain W3C validator