MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blocni Structured version   Unicode version

Theorem blocni 25384
Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 18-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
blocni.8  |-  C  =  ( IndMet `  U )
blocni.d  |-  D  =  ( IndMet `  W )
blocni.j  |-  J  =  ( MetOpen `  C )
blocni.k  |-  K  =  ( MetOpen `  D )
blocni.4  |-  L  =  ( U  LnOp  W
)
blocni.5  |-  B  =  ( U  BLnOp  W )
blocni.u  |-  U  e.  NrmCVec
blocni.w  |-  W  e.  NrmCVec
blocni.l  |-  T  e.  L
Assertion
Ref Expression
blocni  |-  ( T  e.  ( J  Cn  K )  <->  T  e.  B )

Proof of Theorem blocni
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 blocni.u . . . 4  |-  U  e.  NrmCVec
2 eqid 2462 . . . . 5  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
3 eqid 2462 . . . . 5  |-  ( 0vec `  U )  =  (
0vec `  U )
42, 3nvzcl 25193 . . . 4  |-  ( U  e.  NrmCVec  ->  ( 0vec `  U
)  e.  ( BaseSet `  U ) )
51, 4ax-mp 5 . . 3  |-  ( 0vec `  U )  e.  (
BaseSet `  U )
6 blocni.8 . . . . . . . . . 10  |-  C  =  ( IndMet `  U )
72, 6imsmet 25261 . . . . . . . . 9  |-  ( U  e.  NrmCVec  ->  C  e.  ( Met `  ( BaseSet `  U ) ) )
81, 7ax-mp 5 . . . . . . . 8  |-  C  e.  ( Met `  ( BaseSet
`  U ) )
9 metxmet 20567 . . . . . . . 8  |-  ( C  e.  ( Met `  ( BaseSet
`  U ) )  ->  C  e.  ( *Met `  ( BaseSet
`  U ) ) )
108, 9ax-mp 5 . . . . . . 7  |-  C  e.  ( *Met `  ( BaseSet `  U )
)
11 blocni.j . . . . . . . 8  |-  J  =  ( MetOpen `  C )
1211mopntopon 20672 . . . . . . 7  |-  ( C  e.  ( *Met `  ( BaseSet `  U )
)  ->  J  e.  (TopOn `  ( BaseSet `  U
) ) )
1310, 12ax-mp 5 . . . . . 6  |-  J  e.  (TopOn `  ( BaseSet `  U
) )
1413toponunii 19195 . . . . 5  |-  ( BaseSet `  U )  =  U. J
1514cncnpi 19540 . . . 4  |-  ( ( T  e.  ( J  Cn  K )  /\  ( 0vec `  U )  e.  ( BaseSet `  U )
)  ->  T  e.  ( ( J  CnP  K ) `  ( 0vec `  U ) ) )
165, 15mpan2 671 . . 3  |-  ( T  e.  ( J  Cn  K )  ->  T  e.  ( ( J  CnP  K ) `  ( 0vec `  U ) ) )
17 blocni.d . . . 4  |-  D  =  ( IndMet `  W )
18 blocni.k . . . 4  |-  K  =  ( MetOpen `  D )
19 blocni.4 . . . 4  |-  L  =  ( U  LnOp  W
)
20 blocni.5 . . . 4  |-  B  =  ( U  BLnOp  W )
21 blocni.w . . . 4  |-  W  e.  NrmCVec
22 blocni.l . . . 4  |-  T  e.  L
236, 17, 11, 18, 19, 20, 1, 21, 22, 2blocnilem 25383 . . 3  |-  ( ( ( 0vec `  U
)  e.  ( BaseSet `  U )  /\  T  e.  ( ( J  CnP  K ) `  ( 0vec `  U ) ) )  ->  T  e.  B
)
245, 16, 23sylancr 663 . 2  |-  ( T  e.  ( J  Cn  K )  ->  T  e.  B )
25 eleq1 2534 . . 3  |-  ( T  =  ( U  0op  W )  ->  ( T  e.  ( J  Cn  K
)  <->  ( U  0op  W )  e.  ( J  Cn  K ) ) )
26 simprr 756 . . . . . . . 8  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  y  e.  RR+ )
27 eqid 2462 . . . . . . . . . . . . 13  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
28 eqid 2462 . . . . . . . . . . . . 13  |-  ( U
normOpOLD W )  =  ( U normOpOLD W
)
292, 27, 28, 20nmblore 25365 . . . . . . . . . . . 12  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  B )  ->  (
( U normOpOLD W
) `  T )  e.  RR )
301, 21, 29mp3an12 1309 . . . . . . . . . . 11  |-  ( T  e.  B  ->  (
( U normOpOLD W
) `  T )  e.  RR )
31 eqid 2462 . . . . . . . . . . . . . 14  |-  ( U  0op  W )  =  ( U  0op  W
)
3228, 31, 19nmlnogt0 25376 . . . . . . . . . . . . 13  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( T  =/=  ( U  0op  W )  <->  0  <  (
( U normOpOLD W
) `  T )
) )
331, 21, 22, 32mp3an 1319 . . . . . . . . . . . 12  |-  ( T  =/=  ( U  0op  W )  <->  0  <  (
( U normOpOLD W
) `  T )
)
3433biimpi 194 . . . . . . . . . . 11  |-  ( T  =/=  ( U  0op  W )  ->  0  <  ( ( U normOpOLD W
) `  T )
)
3530, 34anim12i 566 . . . . . . . . . 10  |-  ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  ->  (
( ( U normOpOLD W ) `  T
)  e.  RR  /\  0  <  ( ( U
normOpOLD W ) `  T ) ) )
36 elrp 11213 . . . . . . . . . 10  |-  ( ( ( U normOpOLD W
) `  T )  e.  RR+  <->  ( ( ( U normOpOLD W ) `  T )  e.  RR  /\  0  <  ( ( U normOpOLD W ) `  T ) ) )
3735, 36sylibr 212 . . . . . . . . 9  |-  ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  ->  (
( U normOpOLD W
) `  T )  e.  RR+ )
3837adantr 465 . . . . . . . 8  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  ( ( U normOpOLD W ) `  T )  e.  RR+ )
3926, 38rpdivcld 11264 . . . . . . 7  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  ( y  /  ( ( U
normOpOLD W ) `  T ) )  e.  RR+ )
40 simprl 755 . . . . . . . . . . 11  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  x  e.  ( BaseSet `  U )
)
41 metcl 20565 . . . . . . . . . . . 12  |-  ( ( C  e.  ( Met `  ( BaseSet `  U )
)  /\  x  e.  ( BaseSet `  U )  /\  w  e.  ( BaseSet
`  U ) )  ->  ( x C w )  e.  RR )
428, 41mp3an1 1306 . . . . . . . . . . 11  |-  ( ( x  e.  ( BaseSet `  U )  /\  w  e.  ( BaseSet `  U )
)  ->  ( x C w )  e.  RR )
4340, 42sylan 471 . . . . . . . . . 10  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( x C w )  e.  RR )
44 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
y  e.  RR+ )
4544rpred 11247 . . . . . . . . . 10  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
y  e.  RR )
4635ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( ( U
normOpOLD W ) `  T )  e.  RR  /\  0  <  ( ( U normOpOLD W ) `  T ) ) )
47 ltmuldiv2 10407 . . . . . . . . . 10  |-  ( ( ( x C w )  e.  RR  /\  y  e.  RR  /\  (
( ( U normOpOLD W ) `  T
)  e.  RR  /\  0  <  ( ( U
normOpOLD W ) `  T ) ) )  ->  ( ( ( ( U normOpOLD W
) `  T )  x.  ( x C w ) )  <  y  <->  ( x C w )  <  ( y  / 
( ( U normOpOLD W ) `  T
) ) ) )
4843, 45, 46, 47syl3anc 1223 . . . . . . . . 9  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( ( ( U normOpOLD W ) `  T )  x.  (
x C w ) )  <  y  <->  ( x C w )  < 
( y  /  (
( U normOpOLD W
) `  T )
) ) )
49 id 22 . . . . . . . . . . . 12  |-  ( ( T  e.  B  /\  x  e.  ( BaseSet `  U ) )  -> 
( T  e.  B  /\  x  e.  ( BaseSet
`  U ) ) )
5049ad2ant2r 746 . . . . . . . . . . 11  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  ( T  e.  B  /\  x  e.  ( BaseSet `  U )
) )
512, 27, 6, 17, 28, 20, 1, 21blometi 25382 . . . . . . . . . . . 12  |-  ( ( T  e.  B  /\  x  e.  ( BaseSet `  U )  /\  w  e.  ( BaseSet `  U )
)  ->  ( ( T `  x ) D ( T `  w ) )  <_ 
( ( ( U
normOpOLD W ) `  T )  x.  (
x C w ) ) )
52513expa 1191 . . . . . . . . . . 11  |-  ( ( ( T  e.  B  /\  x  e.  ( BaseSet
`  U ) )  /\  w  e.  (
BaseSet `  U ) )  ->  ( ( T `
 x ) D ( T `  w
) )  <_  (
( ( U normOpOLD W ) `  T
)  x.  ( x C w ) ) )
5350, 52sylan 471 . . . . . . . . . 10  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( T `  x ) D ( T `  w ) )  <_  ( (
( U normOpOLD W
) `  T )  x.  ( x C w ) ) )
542, 27, 19lnof 25334 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : ( BaseSet `  U
) --> ( BaseSet `  W
) )
551, 21, 22, 54mp3an 1319 . . . . . . . . . . . . . 14  |-  T :
( BaseSet `  U ) --> ( BaseSet `  W )
5655ffvelrni 6013 . . . . . . . . . . . . 13  |-  ( x  e.  ( BaseSet `  U
)  ->  ( T `  x )  e.  (
BaseSet `  W ) )
5755ffvelrni 6013 . . . . . . . . . . . . 13  |-  ( w  e.  ( BaseSet `  U
)  ->  ( T `  w )  e.  (
BaseSet `  W ) )
5827, 17imsmet 25261 . . . . . . . . . . . . . . 15  |-  ( W  e.  NrmCVec  ->  D  e.  ( Met `  ( BaseSet `  W ) ) )
5921, 58ax-mp 5 . . . . . . . . . . . . . 14  |-  D  e.  ( Met `  ( BaseSet
`  W ) )
60 metcl 20565 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( Met `  ( BaseSet `  W )
)  /\  ( T `  x )  e.  (
BaseSet `  W )  /\  ( T `  w )  e.  ( BaseSet `  W
) )  ->  (
( T `  x
) D ( T `
 w ) )  e.  RR )
6159, 60mp3an1 1306 . . . . . . . . . . . . 13  |-  ( ( ( T `  x
)  e.  ( BaseSet `  W )  /\  ( T `  w )  e.  ( BaseSet `  W )
)  ->  ( ( T `  x ) D ( T `  w ) )  e.  RR )
6256, 57, 61syl2an 477 . . . . . . . . . . . 12  |-  ( ( x  e.  ( BaseSet `  U )  /\  w  e.  ( BaseSet `  U )
)  ->  ( ( T `  x ) D ( T `  w ) )  e.  RR )
6340, 62sylan 471 . . . . . . . . . . 11  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( T `  x ) D ( T `  w ) )  e.  RR )
64 remulcl 9568 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U normOpOLD W ) `  T
)  e.  RR  /\  ( x C w )  e.  RR )  ->  ( ( ( U normOpOLD W ) `  T )  x.  (
x C w ) )  e.  RR )
6530, 42, 64syl2an 477 . . . . . . . . . . . . . 14  |-  ( ( T  e.  B  /\  ( x  e.  ( BaseSet
`  U )  /\  w  e.  ( BaseSet `  U ) ) )  ->  ( ( ( U normOpOLD W ) `  T )  x.  (
x C w ) )  e.  RR )
6665anassrs 648 . . . . . . . . . . . . 13  |-  ( ( ( T  e.  B  /\  x  e.  ( BaseSet
`  U ) )  /\  w  e.  (
BaseSet `  U ) )  ->  ( ( ( U normOpOLD W ) `  T )  x.  (
x C w ) )  e.  RR )
6766adantllr 718 . . . . . . . . . . . 12  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  x  e.  ( BaseSet `  U )
)  /\  w  e.  ( BaseSet `  U )
)  ->  ( (
( U normOpOLD W
) `  T )  x.  ( x C w ) )  e.  RR )
6867adantlrr 720 . . . . . . . . . . 11  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( ( U
normOpOLD W ) `  T )  x.  (
x C w ) )  e.  RR )
69 lelttr 9666 . . . . . . . . . . 11  |-  ( ( ( ( T `  x ) D ( T `  w ) )  e.  RR  /\  ( ( ( U
normOpOLD W ) `  T )  x.  (
x C w ) )  e.  RR  /\  y  e.  RR )  ->  ( ( ( ( T `  x ) D ( T `  w ) )  <_ 
( ( ( U
normOpOLD W ) `  T )  x.  (
x C w ) )  /\  ( ( ( U normOpOLD W
) `  T )  x.  ( x C w ) )  <  y
)  ->  ( ( T `  x ) D ( T `  w ) )  < 
y ) )
7063, 68, 45, 69syl3anc 1223 . . . . . . . . . 10  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( ( ( T `  x ) D ( T `  w ) )  <_ 
( ( ( U
normOpOLD W ) `  T )  x.  (
x C w ) )  /\  ( ( ( U normOpOLD W
) `  T )  x.  ( x C w ) )  <  y
)  ->  ( ( T `  x ) D ( T `  w ) )  < 
y ) )
7153, 70mpand 675 . . . . . . . . 9  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( ( ( U normOpOLD W ) `  T )  x.  (
x C w ) )  <  y  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) )
7248, 71sylbird 235 . . . . . . . 8  |-  ( ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W
) )  /\  (
x  e.  ( BaseSet `  U )  /\  y  e.  RR+ ) )  /\  w  e.  ( BaseSet `  U ) )  -> 
( ( x C w )  <  (
y  /  ( ( U normOpOLD W ) `  T ) )  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) )
7372ralrimiva 2873 . . . . . . 7  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  A. w  e.  ( BaseSet `  U )
( ( x C w )  <  (
y  /  ( ( U normOpOLD W ) `  T ) )  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) )
74 breq2 4446 . . . . . . . . . 10  |-  ( z  =  ( y  / 
( ( U normOpOLD W ) `  T
) )  ->  (
( x C w )  <  z  <->  ( x C w )  < 
( y  /  (
( U normOpOLD W
) `  T )
) ) )
7574imbi1d 317 . . . . . . . . 9  |-  ( z  =  ( y  / 
( ( U normOpOLD W ) `  T
) )  ->  (
( ( x C w )  <  z  ->  ( ( T `  x ) D ( T `  w ) )  <  y )  <-> 
( ( x C w )  <  (
y  /  ( ( U normOpOLD W ) `  T ) )  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) ) )
7675ralbidv 2898 . . . . . . . 8  |-  ( z  =  ( y  / 
( ( U normOpOLD W ) `  T
) )  ->  ( A. w  e.  ( BaseSet
`  U ) ( ( x C w )  <  z  -> 
( ( T `  x ) D ( T `  w ) )  <  y )  <->  A. w  e.  ( BaseSet
`  U ) ( ( x C w )  <  ( y  /  ( ( U
normOpOLD W ) `  T ) )  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) ) )
7776rspcev 3209 . . . . . . 7  |-  ( ( ( y  /  (
( U normOpOLD W
) `  T )
)  e.  RR+  /\  A. w  e.  ( BaseSet `  U ) ( ( x C w )  <  ( y  / 
( ( U normOpOLD W ) `  T
) )  ->  (
( T `  x
) D ( T `
 w ) )  <  y ) )  ->  E. z  e.  RR+  A. w  e.  ( BaseSet `  U ) ( ( x C w )  <  z  ->  (
( T `  x
) D ( T `
 w ) )  <  y ) )
7839, 73, 77syl2anc 661 . . . . . 6  |-  ( ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  /\  ( x  e.  ( BaseSet `  U )  /\  y  e.  RR+ )
)  ->  E. z  e.  RR+  A. w  e.  ( BaseSet `  U )
( ( x C w )  <  z  ->  ( ( T `  x ) D ( T `  w ) )  <  y ) )
7978ralrimivva 2880 . . . . 5  |-  ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  ->  A. x  e.  ( BaseSet `  U ) A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ( BaseSet `  U )
( ( x C w )  <  z  ->  ( ( T `  x ) D ( T `  w ) )  <  y ) )
8079, 55jctil 537 . . . 4  |-  ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  ->  ( T : ( BaseSet `  U
) --> ( BaseSet `  W
)  /\  A. x  e.  ( BaseSet `  U ) A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ( BaseSet `  U )
( ( x C w )  <  z  ->  ( ( T `  x ) D ( T `  w ) )  <  y ) ) )
81 metxmet 20567 . . . . . 6  |-  ( D  e.  ( Met `  ( BaseSet
`  W ) )  ->  D  e.  ( *Met `  ( BaseSet
`  W ) ) )
8259, 81ax-mp 5 . . . . 5  |-  D  e.  ( *Met `  ( BaseSet `  W )
)
8311, 18metcn 20776 . . . . 5  |-  ( ( C  e.  ( *Met `  ( BaseSet `  U ) )  /\  D  e.  ( *Met `  ( BaseSet `  W
) ) )  -> 
( T  e.  ( J  Cn  K )  <-> 
( T : (
BaseSet `  U ) --> (
BaseSet `  W )  /\  A. x  e.  ( BaseSet `  U ) A. y  e.  RR+  E. z  e.  RR+  A. w  e.  (
BaseSet `  U ) ( ( x C w )  <  z  -> 
( ( T `  x ) D ( T `  w ) )  <  y ) ) ) )
8410, 82, 83mp2an 672 . . . 4  |-  ( T  e.  ( J  Cn  K )  <->  ( T : ( BaseSet `  U
) --> ( BaseSet `  W
)  /\  A. x  e.  ( BaseSet `  U ) A. y  e.  RR+  E. z  e.  RR+  A. w  e.  ( BaseSet `  U )
( ( x C w )  <  z  ->  ( ( T `  x ) D ( T `  w ) )  <  y ) ) )
8580, 84sylibr 212 . . 3  |-  ( ( T  e.  B  /\  T  =/=  ( U  0op  W ) )  ->  T  e.  ( J  Cn  K
) )
86 eqid 2462 . . . . . . 7  |-  ( 0vec `  W )  =  (
0vec `  W )
872, 86, 310ofval 25366 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( U  0op  W )  =  ( ( BaseSet `  U
)  X.  { (
0vec `  W ) } ) )
881, 21, 87mp2an 672 . . . . 5  |-  ( U  0op  W )  =  ( ( BaseSet `  U
)  X.  { (
0vec `  W ) } )
8918mopntopon 20672 . . . . . . 7  |-  ( D  e.  ( *Met `  ( BaseSet `  W )
)  ->  K  e.  (TopOn `  ( BaseSet `  W
) ) )
9082, 89ax-mp 5 . . . . . 6  |-  K  e.  (TopOn `  ( BaseSet `  W
) )
9127, 86nvzcl 25193 . . . . . . 7  |-  ( W  e.  NrmCVec  ->  ( 0vec `  W
)  e.  ( BaseSet `  W ) )
9221, 91ax-mp 5 . . . . . 6  |-  ( 0vec `  W )  e.  (
BaseSet `  W )
93 cnconst2 19545 . . . . . 6  |-  ( ( J  e.  (TopOn `  ( BaseSet `  U )
)  /\  K  e.  (TopOn `  ( BaseSet `  W
) )  /\  ( 0vec `  W )  e.  ( BaseSet `  W )
)  ->  ( ( BaseSet
`  U )  X. 
{ ( 0vec `  W
) } )  e.  ( J  Cn  K
) )
9413, 90, 92, 93mp3an 1319 . . . . 5  |-  ( (
BaseSet `  U )  X. 
{ ( 0vec `  W
) } )  e.  ( J  Cn  K
)
9588, 94eqeltri 2546 . . . 4  |-  ( U  0op  W )  e.  ( J  Cn  K
)
9695a1i 11 . . 3  |-  ( T  e.  B  ->  ( U  0op  W )  e.  ( J  Cn  K
) )
9725, 85, 96pm2.61ne 2777 . 2  |-  ( T  e.  B  ->  T  e.  ( J  Cn  K
) )
9824, 97impbii 188 1  |-  ( T  e.  ( J  Cn  K )  <->  T  e.  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2657   A.wral 2809   E.wrex 2810   {csn 4022   class class class wbr 4442    X. cxp 4992   -->wf 5577   ` cfv 5581  (class class class)co 6277   RRcr 9482   0cc0 9483    x. cmul 9488    < clt 9619    <_ cle 9620    / cdiv 10197   RR+crp 11211   *Metcxmt 18169   Metcme 18170   MetOpencmopn 18174  TopOnctopon 19157    Cn ccn 19486    CnP ccnp 19487   NrmCVeccnv 25141   BaseSetcba 25143   0veccn0v 25145   IndMetcims 25148    LnOp clno 25319   normOpOLDcnmoo 25320    BLnOp cblo 25321    0op c0o 25322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-pre-sup 9561  ax-addf 9562  ax-mulf 9563
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-1st 6776  df-2nd 6777  df-recs 7034  df-rdg 7068  df-er 7303  df-map 7414  df-en 7509  df-dom 7510  df-sdom 7511  df-sup 7892  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198  df-nn 10528  df-2 10585  df-3 10586  df-n0 10787  df-z 10856  df-uz 11074  df-q 11174  df-rp 11212  df-xneg 11309  df-xadd 11310  df-xmul 11311  df-seq 12066  df-exp 12125  df-cj 12884  df-re 12885  df-im 12886  df-sqr 13020  df-abs 13021  df-topgen 14690  df-psmet 18177  df-xmet 18178  df-met 18179  df-bl 18180  df-mopn 18181  df-top 19161  df-bases 19163  df-topon 19164  df-cn 19489  df-cnp 19490  df-grpo 24857  df-gid 24858  df-ginv 24859  df-gdiv 24860  df-ablo 24948  df-vc 25103  df-nv 25149  df-va 25152  df-ba 25153  df-sm 25154  df-0v 25155  df-vs 25156  df-nmcv 25157  df-ims 25158  df-lno 25323  df-nmoo 25324  df-blo 25325  df-0o 25326
This theorem is referenced by:  lnocni  25385  blocn  25386
  Copyright terms: Public domain W3C validator