MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blin2 Structured version   Unicode version

Theorem blin2 20667
Description: Given any two balls and a point in their intersection, there is a ball contained in the intersection with the given center point. (Contributed by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blin2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) )
Distinct variable groups:    x, B    x, C    x, D    x, P    x, X

Proof of Theorem blin2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 753 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  D  e.  ( *Met `  X ) )
2 simprl 755 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  B  e.  ran  ( ball `  D ) )
3 simplr 754 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  ( B  i^i  C ) )
4 elin 3687 . . . . 5  |-  ( P  e.  ( B  i^i  C )  <->  ( P  e.  B  /\  P  e.  C ) )
53, 4sylib 196 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( P  e.  B  /\  P  e.  C
) )
65simpld 459 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  B )
7 blss 20663 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  ran  ( ball `  D )  /\  P  e.  B
)  ->  E. y  e.  RR+  ( P (
ball `  D )
y )  C_  B
)
81, 2, 6, 7syl3anc 1228 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. y  e.  RR+  ( P ( ball `  D
) y )  C_  B )
9 simprr 756 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  C  e.  ran  ( ball `  D ) )
105simprd 463 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  C )
11 blss 20663 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  C  e.  ran  ( ball `  D )  /\  P  e.  C
)  ->  E. z  e.  RR+  ( P (
ball `  D )
z )  C_  C
)
121, 9, 10, 11syl3anc 1228 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. z  e.  RR+  ( P ( ball `  D
) z )  C_  C )
13 reeanv 3029 . . 3  |-  ( E. y  e.  RR+  E. z  e.  RR+  ( ( P ( ball `  D
) y )  C_  B  /\  ( P (
ball `  D )
z )  C_  C
)  <->  ( E. y  e.  RR+  ( P (
ball `  D )
y )  C_  B  /\  E. z  e.  RR+  ( P ( ball `  D
) z )  C_  C ) )
14 ss2in 3725 . . . . 5  |-  ( ( ( P ( ball `  D ) y ) 
C_  B  /\  ( P ( ball `  D
) z )  C_  C )  ->  (
( P ( ball `  D ) y )  i^i  ( P (
ball `  D )
z ) )  C_  ( B  i^i  C ) )
15 inss1 3718 . . . . . . . . . . 11  |-  ( B  i^i  C )  C_  B
16 blf 20645 . . . . . . . . . . . . . 14  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
17 frn 5735 . . . . . . . . . . . . . 14  |-  ( (
ball `  D ) : ( X  X.  RR* ) --> ~P X  ->  ran  ( ball `  D
)  C_  ~P X
)
181, 16, 173syl 20 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  ran  ( ball `  D
)  C_  ~P X
)
1918, 2sseldd 3505 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  B  e.  ~P X
)
2019elpwid 4020 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  B  C_  X )
2115, 20syl5ss 3515 . . . . . . . . . 10  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( B  i^i  C
)  C_  X )
2221, 3sseldd 3505 . . . . . . . . 9  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  P  e.  X )
231, 22jca 532 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( D  e.  ( *Met `  X
)  /\  P  e.  X ) )
24 rpxr 11223 . . . . . . . . 9  |-  ( y  e.  RR+  ->  y  e. 
RR* )
25 rpxr 11223 . . . . . . . . 9  |-  ( z  e.  RR+  ->  z  e. 
RR* )
2624, 25anim12i 566 . . . . . . . 8  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  ->  (
y  e.  RR*  /\  z  e.  RR* ) )
27 blin 20659 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
y  e.  RR*  /\  z  e.  RR* ) )  -> 
( ( P (
ball `  D )
y )  i^i  ( P ( ball `  D
) z ) )  =  ( P (
ball `  D ) if ( y  <_  z ,  y ,  z ) ) )
2823, 26, 27syl2an 477 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( P ( ball `  D
) y )  i^i  ( P ( ball `  D ) z ) )  =  ( P ( ball `  D
) if ( y  <_  z ,  y ,  z ) ) )
2928sseq1d 3531 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( P ( ball `  D ) y )  i^i  ( P (
ball `  D )
z ) )  C_  ( B  i^i  C )  <-> 
( P ( ball `  D ) if ( y  <_  z , 
y ,  z ) )  C_  ( B  i^i  C ) ) )
30 ifcl 3981 . . . . . . . 8  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  ->  if ( y  <_  z ,  y ,  z )  e.  RR+ )
31 oveq2 6290 . . . . . . . . . . 11  |-  ( x  =  if ( y  <_  z ,  y ,  z )  -> 
( P ( ball `  D ) x )  =  ( P (
ball `  D ) if ( y  <_  z ,  y ,  z ) ) )
3231sseq1d 3531 . . . . . . . . . 10  |-  ( x  =  if ( y  <_  z ,  y ,  z )  -> 
( ( P (
ball `  D )
x )  C_  ( B  i^i  C )  <->  ( P
( ball `  D ) if ( y  <_  z ,  y ,  z ) )  C_  ( B  i^i  C ) ) )
3332rspcev 3214 . . . . . . . . 9  |-  ( ( if ( y  <_ 
z ,  y ,  z )  e.  RR+  /\  ( P ( ball `  D ) if ( y  <_  z , 
y ,  z ) )  C_  ( B  i^i  C ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) )
3433ex 434 . . . . . . . 8  |-  ( if ( y  <_  z ,  y ,  z )  e.  RR+  ->  ( ( P ( ball `  D ) if ( y  <_  z , 
y ,  z ) )  C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3530, 34syl 16 . . . . . . 7  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  ->  (
( P ( ball `  D ) if ( y  <_  z , 
y ,  z ) )  C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3635adantl 466 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( P ( ball `  D
) if ( y  <_  z ,  y ,  z ) ) 
C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3729, 36sylbid 215 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( P ( ball `  D ) y )  i^i  ( P (
ball `  D )
z ) )  C_  ( B  i^i  C )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) ) )
3814, 37syl5 32 . . . 4  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  ( B  i^i  C
) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( P ( ball `  D ) y ) 
C_  B  /\  ( P ( ball `  D
) z )  C_  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
3938rexlimdvva 2962 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( E. y  e.  RR+  E. z  e.  RR+  ( ( P (
ball `  D )
y )  C_  B  /\  ( P ( ball `  D ) z ) 
C_  C )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) ) )
4013, 39syl5bir 218 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  -> 
( ( E. y  e.  RR+  ( P (
ball `  D )
y )  C_  B  /\  E. z  e.  RR+  ( P ( ball `  D
) z )  C_  C )  ->  E. x  e.  RR+  ( P (
ball `  D )
x )  C_  ( B  i^i  C ) ) )
418, 12, 40mp2and 679 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  ( B  i^i  C ) )  /\  ( B  e.  ran  ( ball `  D )  /\  C  e.  ran  ( ball `  D
) ) )  ->  E. x  e.  RR+  ( P ( ball `  D
) x )  C_  ( B  i^i  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   E.wrex 2815    i^i cin 3475    C_ wss 3476   ifcif 3939   ~Pcpw 4010   class class class wbr 4447    X. cxp 4997   ran crn 5000   -->wf 5582   ` cfv 5586  (class class class)co 6282   RR*cxr 9623    <_ cle 9625   RR+crp 11216   *Metcxmt 18174   ballcbl 18176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-n0 10792  df-z 10861  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-psmet 18182  df-xmet 18183  df-bl 18185
This theorem is referenced by:  blbas  20668
  Copyright terms: Public domain W3C validator