MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blhalf Structured version   Unicode version

Theorem blhalf 20643
Description: A ball of radius  R  / 
2 is contained in a ball of radius  R centered at any point inside the smaller ball. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.)
Assertion
Ref Expression
blhalf  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y ( ball `  M
) ( R  / 
2 ) )  C_  ( Z ( ball `  M
) R ) )

Proof of Theorem blhalf
StepHypRef Expression
1 simpll 753 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  M  e.  ( *Met `  X ) )
2 simplr 754 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  Y  e.  X )
3 simprr 756 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) )
4 simprl 755 . . . . . . 7  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  R  e.  RR )
54rehalfcld 10781 . . . . . 6  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( R  /  2 )  e.  RR )
65rexrd 9639 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( R  /  2 )  e. 
RR* )
7 elbl 20626 . . . . 5  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  X  /\  ( R  /  2
)  e.  RR* )  ->  ( Z  e.  ( Y ( ball `  M
) ( R  / 
2 ) )  <->  ( Z  e.  X  /\  ( Y M Z )  < 
( R  /  2
) ) ) )
81, 2, 6, 7syl3anc 1228 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Z  e.  ( Y
( ball `  M )
( R  /  2
) )  <->  ( Z  e.  X  /\  ( Y M Z )  < 
( R  /  2
) ) ) )
93, 8mpbid 210 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Z  e.  X  /\  ( Y M Z )  <  ( R  / 
2 ) ) )
109simpld 459 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  Z  e.  X )
119simprd 463 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y M Z )  < 
( R  /  2
) )
12 xmetcl 20569 . . . . . 6  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  X  /\  Z  e.  X
)  ->  ( Y M Z )  e.  RR* )
131, 2, 10, 12syl3anc 1228 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y M Z )  e. 
RR* )
14 xrltle 11351 . . . . 5  |-  ( ( ( Y M Z )  e.  RR*  /\  ( R  /  2 )  e. 
RR* )  ->  (
( Y M Z )  <  ( R  /  2 )  -> 
( Y M Z )  <_  ( R  /  2 ) ) )
1513, 6, 14syl2anc 661 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  (
( Y M Z )  <  ( R  /  2 )  -> 
( Y M Z )  <_  ( R  /  2 ) ) )
1611, 15mpd 15 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y M Z )  <_ 
( R  /  2
) )
175recnd 9618 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( R  /  2 )  e.  CC )
1817, 17pncand 9927 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  (
( ( R  / 
2 )  +  ( R  /  2 ) )  -  ( R  /  2 ) )  =  ( R  / 
2 ) )
194recnd 9618 . . . . . 6  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  R  e.  CC )
20192halvesd 10780 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  (
( R  /  2
)  +  ( R  /  2 ) )  =  R )
2120oveq1d 6297 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  (
( ( R  / 
2 )  +  ( R  /  2 ) )  -  ( R  /  2 ) )  =  ( R  -  ( R  /  2
) ) )
2218, 21eqtr3d 2510 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( R  /  2 )  =  ( R  -  ( R  /  2 ) ) )
2316, 22breqtrd 4471 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y M Z )  <_ 
( R  -  ( R  /  2 ) ) )
24 blss2 20642 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  Z  e.  X
)  /\  ( ( R  /  2 )  e.  RR  /\  R  e.  RR  /\  ( Y M Z )  <_ 
( R  -  ( R  /  2 ) ) ) )  ->  ( Y ( ball `  M
) ( R  / 
2 ) )  C_  ( Z ( ball `  M
) R ) )
251, 2, 10, 5, 4, 23, 24syl33anc 1243 1  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X )  /\  ( R  e.  RR  /\  Z  e.  ( Y ( ball `  M ) ( R  /  2 ) ) ) )  ->  ( Y ( ball `  M
) ( R  / 
2 ) )  C_  ( Z ( ball `  M
) R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1767    C_ wss 3476   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   RRcr 9487    + caddc 9491   RR*cxr 9623    < clt 9624    <_ cle 9625    - cmin 9801    / cdiv 10202   2c2 10581   *Metcxmt 18174   ballcbl 18176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-2 10590  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-psmet 18182  df-xmet 18183  df-bl 18185
This theorem is referenced by:  met2ndci  20760  iscfil3  21447  cfilfcls  21448  iscmet3lem2  21466  lmcau  21486  lgamucov  28220  sstotbnd2  29873  isbnd2  29882  heiborlem8  29917
  Copyright terms: Public domain W3C validator