MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blfvalps Structured version   Unicode version

Theorem blfvalps 19917
Description: The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
blfvalps  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D )  =  ( x  e.  X , 
r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) )
Distinct variable groups:    x, r,
y, D    X, r, x, y

Proof of Theorem blfvalps
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 df-bl 17771 . . 3  |-  ball  =  ( d  e.  _V  |->  ( x  e.  dom  dom  d ,  r  e. 
RR*  |->  { y  e. 
dom  dom  d  |  ( x d y )  <  r } ) )
21a1i 11 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ball  =  ( d  e.  _V  |->  ( x  e.  dom  dom  d ,  r  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  < 
r } ) ) )
3 dmeq 5036 . . . . 5  |-  ( d  =  D  ->  dom  d  =  dom  D )
43dmeqd 5038 . . . 4  |-  ( d  =  D  ->  dom  dom  d  =  dom  dom  D )
5 psmetdmdm 19840 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  X  =  dom  dom  D )
65eqcomd 2446 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  dom  dom  D  =  X )
74, 6sylan9eqr 2495 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  dom  dom  d  =  X )
8 eqidd 2442 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  RR*  =  RR* )
9 simpr 458 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  d  =  D )
109oveqd 6107 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
x d y )  =  ( x D y ) )
1110breq1d 4299 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
( x d y )  <  r  <->  ( x D y )  < 
r ) )
127, 11rabeqbidv 2965 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  { y  e.  dom  dom  d  |  ( x d y )  <  r }  =  { y  e.  X  |  (
x D y )  <  r } )
137, 8, 12mpt2eq123dv 6147 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  d  =  D )  ->  (
x  e.  dom  dom  d ,  r  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  < 
r } )  =  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) )
14 elex 2979 . 2  |-  ( D  e.  (PsMet `  X
)  ->  D  e.  _V )
15 ssrab2 3434 . . . . . 6  |-  { y  e.  X  |  ( x D y )  <  r }  C_  X
16 elfvdm 5713 . . . . . . . 8  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  dom PsMet )
1716adantr 462 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  X  /\  r  e.  RR* ) )  ->  X  e.  dom PsMet )
18 elpw2g 4452 . . . . . . 7  |-  ( X  e.  dom PsMet  ->  ( { y  e.  X  | 
( x D y )  <  r }  e.  ~P X  <->  { y  e.  X  |  (
x D y )  <  r }  C_  X ) )
1917, 18syl 16 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  X  /\  r  e.  RR* ) )  ->  ( { y  e.  X  |  ( x D y )  <  r }  e.  ~P X  <->  { y  e.  X  |  ( x D y )  <  r }  C_  X ) )
2015, 19mpbiri 233 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  (
x  e.  X  /\  r  e.  RR* ) )  ->  { y  e.  X  |  ( x D y )  < 
r }  e.  ~P X )
2120ralrimivva 2806 . . . 4  |-  ( D  e.  (PsMet `  X
)  ->  A. x  e.  X  A. r  e.  RR*  { y  e.  X  |  ( x D y )  < 
r }  e.  ~P X )
22 eqid 2441 . . . . 5  |-  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } )  =  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } )
2322fmpt2 6640 . . . 4  |-  ( A. x  e.  X  A. r  e.  RR*  { y  e.  X  |  ( x D y )  <  r }  e.  ~P X  <->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } ) : ( X  X.  RR* )
--> ~P X )
2421, 23sylib 196 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } ) : ( X  X.  RR* )
--> ~P X )
25 xrex 10984 . . . 4  |-  RR*  e.  _V
26 xpexg 6506 . . . 4  |-  ( ( X  e.  dom PsMet  /\  RR*  e.  _V )  ->  ( X  X.  RR* )  e.  _V )
2716, 25, 26sylancl 657 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ( X  X.  RR* )  e.  _V )
28 pwexg 4473 . . . 4  |-  ( X  e.  dom PsMet  ->  ~P X  e.  _V )
2916, 28syl 16 . . 3  |-  ( D  e.  (PsMet `  X
)  ->  ~P X  e.  _V )
30 fex2 6531 . . 3  |-  ( ( ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) : ( X  X.  RR* ) --> ~P X  /\  ( X  X.  RR* )  e.  _V  /\  ~P X  e.  _V )  ->  (
x  e.  X , 
r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } )  e.  _V )
3124, 27, 29, 30syl3anc 1213 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } )  e. 
_V )
322, 13, 14, 31fvmptd 5776 1  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D )  =  ( x  e.  X , 
r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   {crab 2717   _Vcvv 2970    C_ wss 3325   ~Pcpw 3857   class class class wbr 4289    e. cmpt 4347    X. cxp 4834   dom cdm 4836   -->wf 5411   ` cfv 5415  (class class class)co 6090    e. cmpt2 6092   RR*cxr 9413    < clt 9414  PsMetcpsmet 17759   ballcbl 17762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-map 7212  df-xr 9418  df-psmet 17768  df-bl 17771
This theorem is referenced by:  blfval  19918  blvalps  19919  blfps  19940
  Copyright terms: Public domain W3C validator