MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blf Structured version   Unicode version

Theorem blf 19987
Description: Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
blf  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )

Proof of Theorem blf
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3442 . . . . . 6  |-  { y  e.  X  |  ( x D y )  <  r }  C_  X
2 elfvdm 5721 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
3 elpw2g 4460 . . . . . . 7  |-  ( X  e.  dom  *Met  ->  ( { y  e.  X  |  ( x D y )  < 
r }  e.  ~P X 
<->  { y  e.  X  |  ( x D y )  <  r }  C_  X ) )
42, 3syl 16 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  ( { y  e.  X  |  ( x D y )  <  r }  e.  ~P X  <->  { y  e.  X  | 
( x D y )  <  r } 
C_  X ) )
51, 4mpbiri 233 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  { y  e.  X  |  ( x D y )  <  r }  e.  ~P X )
65a1d 25 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  (
( x  e.  X  /\  r  e.  RR* )  ->  { y  e.  X  |  ( x D y )  <  r }  e.  ~P X
) )
76ralrimivv 2812 . . 3  |-  ( D  e.  ( *Met `  X )  ->  A. x  e.  X  A. r  e.  RR*  { y  e.  X  |  ( x D y )  < 
r }  e.  ~P X )
8 eqid 2443 . . . 4  |-  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } )  =  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } )
98fmpt2 6646 . . 3  |-  ( A. x  e.  X  A. r  e.  RR*  { y  e.  X  |  ( x D y )  <  r }  e.  ~P X  <->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } ) : ( X  X.  RR* )
--> ~P X )
107, 9sylib 196 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
x  e.  X , 
r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) : ( X  X.  RR* ) --> ~P X )
11 blfval 19964 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  =  ( x  e.  X ,  r  e.  RR*  |->  { y  e.  X  |  ( x D y )  <  r } ) )
1211feq1d 5551 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
( ball `  D ) : ( X  X.  RR* ) --> ~P X  <->  ( x  e.  X ,  r  e. 
RR*  |->  { y  e.  X  |  ( x D y )  < 
r } ) : ( X  X.  RR* )
--> ~P X ) )
1310, 12mpbird 232 1  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1756   A.wral 2720   {crab 2724    C_ wss 3333   ~Pcpw 3865   class class class wbr 4297    X. cxp 4843   dom cdm 4845   -->wf 5419   ` cfv 5423  (class class class)co 6096    e. cmpt2 6098   RR*cxr 9422    < clt 9423   *Metcxmt 17806   ballcbl 17808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-1st 6582  df-2nd 6583  df-map 7221  df-xr 9427  df-psmet 17814  df-xmet 17815  df-bl 17817
This theorem is referenced by:  blrn  19989  blelrn  19997  blssm  19998  unirnbl  20000  blin2  20009  imasf1oxms  20069  iscau2  20793  ismtyhmeolem  28708
  Copyright terms: Public domain W3C validator