MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blelrn Structured version   Unicode version

Theorem blelrn 21356
Description: A ball belongs to the set of balls of a metric space. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blelrn  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  e.  ran  ( ball `  D ) )

Proof of Theorem blelrn
StepHypRef Expression
1 blf 21346 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
2 ffn 5737 . . 3  |-  ( (
ball `  D ) : ( X  X.  RR* ) --> ~P X  -> 
( ball `  D )  Fn  ( X  X.  RR* ) )
31, 2syl 17 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  Fn  ( X  X.  RR* ) )
4 fnovrn 6449 . 2  |-  ( ( ( ball `  D
)  Fn  ( X  X.  RR* )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( P ( ball `  D
) R )  e. 
ran  ( ball `  D
) )
53, 4syl3an1 1297 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  e.  ran  ( ball `  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 982    e. wcel 1867   ~Pcpw 3976    X. cxp 4843   ran crn 4846    Fn wfn 5587   -->wf 5588   ` cfv 5592  (class class class)co 6296   RR*cxr 9663   *Metcxmt 18883   ballcbl 18885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-cnex 9584  ax-resscn 9585
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-fv 5600  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6798  df-2nd 6799  df-map 7473  df-xr 9668  df-psmet 18890  df-xmet 18891  df-bl 18893
This theorem is referenced by:  unirnbl  21359  blssex  21366  blopn  21439  blcld  21444  metss  21447  metcnp3  21479  dscopn  21512  ioo2blex  21736
  Copyright terms: Public domain W3C validator