MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blelrn Structured version   Unicode version

Theorem blelrn 20011
Description: A ball belongs to the set of balls of a metric space. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blelrn  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  e.  ran  ( ball `  D ) )

Proof of Theorem blelrn
StepHypRef Expression
1 blf 20001 . . 3  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
2 ffn 5578 . . 3  |-  ( (
ball `  D ) : ( X  X.  RR* ) --> ~P X  -> 
( ball `  D )  Fn  ( X  X.  RR* ) )
31, 2syl 16 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D )  Fn  ( X  X.  RR* ) )
4 fnovrn 6257 . 2  |-  ( ( ( ball `  D
)  Fn  ( X  X.  RR* )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( P ( ball `  D
) R )  e. 
ran  ( ball `  D
) )
53, 4syl3an1 1251 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  e.  ran  ( ball `  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965    e. wcel 1756   ~Pcpw 3879    X. cxp 4857   ran crn 4860    Fn wfn 5432   -->wf 5433   ` cfv 5437  (class class class)co 6110   RR*cxr 9436   *Metcxmt 17820   ballcbl 17822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391  ax-cnex 9357  ax-resscn 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2739  df-rex 2740  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-op 3903  df-uni 4111  df-iun 4192  df-br 4312  df-opab 4370  df-mpt 4371  df-id 4655  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-fv 5445  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6596  df-2nd 6597  df-map 7235  df-xr 9441  df-psmet 17828  df-xmet 17829  df-bl 17831
This theorem is referenced by:  unirnbl  20014  blssex  20021  blopn  20094  blcld  20099  metss  20102  metcnp3  20134  dscopn  20185  ioo2blex  20390
  Copyright terms: Public domain W3C validator