MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcvx Unicode version

Theorem blcvx 18782
Description: An open ball in the complex numbers is a convex set. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypothesis
Ref Expression
blcvx.s  |-  S  =  ( P ( ball `  ( abs  o.  -  ) ) R )
Assertion
Ref Expression
blcvx  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  S )

Proof of Theorem blcvx
StepHypRef Expression
1 simpr3 965 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  T  e.  ( 0 [,] 1
) )
2 0re 9047 . . . . . . . . 9  |-  0  e.  RR
3 1re 9046 . . . . . . . . 9  |-  1  e.  RR
42, 3elicc2i 10932 . . . . . . . 8  |-  ( T  e.  ( 0 [,] 1 )  <->  ( T  e.  RR  /\  0  <_  T  /\  T  <_  1
) )
51, 4sylib 189 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( T  e.  RR  /\  0  <_  T  /\  T  <_ 
1 ) )
65simp1d 969 . . . . . 6  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  T  e.  RR )
76recnd 9070 . . . . 5  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  T  e.  CC )
8 simpr1 963 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  A  e.  S )
9 blcvx.s . . . . . . . 8  |-  S  =  ( P ( ball `  ( abs  o.  -  ) ) R )
108, 9syl6eleq 2494 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  A  e.  ( P ( ball `  ( abs  o.  -  ) ) R ) )
11 cnxmet 18760 . . . . . . . . 9  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
1211a1i 11 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs  o.  -  )  e.  ( * Met `  CC ) )
13 simpll 731 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  P  e.  CC )
14 simplr 732 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  R  e.  RR* )
15 elbl 18371 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  P  e.  CC  /\  R  e.  RR* )  ->  ( A  e.  ( P
( ball `  ( abs  o. 
-  ) ) R )  <->  ( A  e.  CC  /\  ( P ( abs  o.  -  ) A )  <  R
) ) )
1612, 13, 14, 15syl3anc 1184 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( A  e.  ( P
( ball `  ( abs  o. 
-  ) ) R )  <->  ( A  e.  CC  /\  ( P ( abs  o.  -  ) A )  <  R
) ) )
1710, 16mpbid 202 . . . . . 6  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( A  e.  CC  /\  ( P ( abs  o.  -  ) A )  <  R ) )
1817simpld 446 . . . . 5  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  A  e.  CC )
197, 18mulcld 9064 . . . 4  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( T  x.  A )  e.  CC )
20 resubcl 9321 . . . . . . 7  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  ( 1  -  T
)  e.  RR )
213, 6, 20sylancr 645 . . . . . 6  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
1  -  T )  e.  RR )
2221recnd 9070 . . . . 5  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
1  -  T )  e.  CC )
23 simpr2 964 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  B  e.  S )
2423, 9syl6eleq 2494 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  B  e.  ( P ( ball `  ( abs  o.  -  ) ) R ) )
25 elbl 18371 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  P  e.  CC  /\  R  e.  RR* )  ->  ( B  e.  ( P
( ball `  ( abs  o. 
-  ) ) R )  <->  ( B  e.  CC  /\  ( P ( abs  o.  -  ) B )  <  R
) ) )
2612, 13, 14, 25syl3anc 1184 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( B  e.  ( P
( ball `  ( abs  o. 
-  ) ) R )  <->  ( B  e.  CC  /\  ( P ( abs  o.  -  ) B )  <  R
) ) )
2724, 26mpbid 202 . . . . . 6  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( B  e.  CC  /\  ( P ( abs  o.  -  ) B )  <  R ) )
2827simpld 446 . . . . 5  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  B  e.  CC )
2922, 28mulcld 9064 . . . 4  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( 1  -  T
)  x.  B )  e.  CC )
3019, 29addcld 9063 . . 3  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  CC )
31 eqid 2404 . . . . . . 7  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
3231cnmetdval 18758 . . . . . 6  |-  ( ( P  e.  CC  /\  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )  e.  CC )  ->  ( P ( abs  o.  -  )
( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) ) )  =  ( abs `  ( P  -  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B
) ) ) ) )
3313, 30, 32syl2anc 643 . . . . 5  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P ( abs  o.  -  ) ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) )  =  ( abs `  ( P  -  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) ) ) )
347, 13, 18subdid 9445 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( T  x.  ( P  -  A ) )  =  ( ( T  x.  P )  -  ( T  x.  A )
) )
3522, 13, 28subdid 9445 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( 1  -  T
)  x.  ( P  -  B ) )  =  ( ( ( 1  -  T )  x.  P )  -  ( ( 1  -  T )  x.  B
) ) )
3634, 35oveq12d 6058 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  x.  ( P  -  A )
)  +  ( ( 1  -  T )  x.  ( P  -  B ) ) )  =  ( ( ( T  x.  P )  -  ( T  x.  A ) )  +  ( ( ( 1  -  T )  x.  P )  -  (
( 1  -  T
)  x.  B ) ) ) )
377, 13mulcld 9064 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( T  x.  P )  e.  CC )
3822, 13mulcld 9064 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( 1  -  T
)  x.  P )  e.  CC )
3937, 38, 19, 29addsub4d 9414 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( ( T  x.  P )  +  ( ( 1  -  T
)  x.  P ) )  -  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) )  =  ( ( ( T  x.  P )  -  ( T  x.  A ) )  +  ( ( ( 1  -  T )  x.  P )  -  (
( 1  -  T
)  x.  B ) ) ) )
40 ax-1cn 9004 . . . . . . . . . . 11  |-  1  e.  CC
41 pncan3 9269 . . . . . . . . . . 11  |-  ( ( T  e.  CC  /\  1  e.  CC )  ->  ( T  +  ( 1  -  T ) )  =  1 )
427, 40, 41sylancl 644 . . . . . . . . . 10  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( T  +  ( 1  -  T ) )  =  1 )
4342oveq1d 6055 . . . . . . . . 9  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  +  ( 1  -  T ) )  x.  P )  =  ( 1  x.  P ) )
447, 22, 13adddird 9069 . . . . . . . . 9  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  +  ( 1  -  T ) )  x.  P )  =  ( ( T  x.  P )  +  ( ( 1  -  T )  x.  P
) ) )
45 mulid2 9045 . . . . . . . . . 10  |-  ( P  e.  CC  ->  (
1  x.  P )  =  P )
4645ad2antrr 707 . . . . . . . . 9  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
1  x.  P )  =  P )
4743, 44, 463eqtr3d 2444 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  x.  P
)  +  ( ( 1  -  T )  x.  P ) )  =  P )
4847oveq1d 6055 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( ( T  x.  P )  +  ( ( 1  -  T
)  x.  P ) )  -  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) )  =  ( P  -  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) ) ) )
4936, 39, 483eqtr2d 2442 . . . . . 6  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  x.  ( P  -  A )
)  +  ( ( 1  -  T )  x.  ( P  -  B ) ) )  =  ( P  -  ( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) ) ) )
5049fveq2d 5691 . . . . 5  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  =  ( abs `  ( P  -  ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) ) ) )
5133, 50eqtr4d 2439 . . . 4  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P ( abs  o.  -  ) ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) )  =  ( abs `  (
( T  x.  ( P  -  A )
)  +  ( ( 1  -  T )  x.  ( P  -  B ) ) ) ) )
5213, 18subcld 9367 . . . . . . . . . 10  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P  -  A )  e.  CC )
537, 52mulcld 9064 . . . . . . . . 9  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( T  x.  ( P  -  A ) )  e.  CC )
5413, 28subcld 9367 . . . . . . . . . 10  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P  -  B )  e.  CC )
5522, 54mulcld 9064 . . . . . . . . 9  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( 1  -  T
)  x.  ( P  -  B ) )  e.  CC )
5653, 55addcld 9063 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  x.  ( P  -  A )
)  +  ( ( 1  -  T )  x.  ( P  -  B ) ) )  e.  CC )
5756abscld 12193 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  e.  RR )
5857adantr 452 . . . . . 6  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  e.  RR )
5953abscld 12193 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( T  x.  ( P  -  A
) ) )  e.  RR )
6055abscld 12193 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  e.  RR )
6159, 60readdcld 9071 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  e.  RR )
6261adantr 452 . . . . . 6  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  e.  RR )
63 simpr 448 . . . . . 6  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  R  e.  RR )
6453, 55abstrid 12213 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  <_ 
( ( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) ) )
6564adantr 452 . . . . . 6  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  <_ 
( ( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) ) )
66 oveq1 6047 . . . . . . . . . . . 12  |-  ( T  =  0  ->  ( T  x.  ( P  -  A ) )  =  ( 0  x.  ( P  -  A )
) )
6752mul02d 9220 . . . . . . . . . . . 12  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
0  x.  ( P  -  A ) )  =  0 )
6866, 67sylan9eqr 2458 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  T  =  0 )  ->  ( T  x.  ( P  -  A ) )  =  0 )
6968abs00bd 12051 . . . . . . . . . 10  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  T  =  0 )  ->  ( abs `  ( T  x.  ( P  -  A
) ) )  =  0 )
70 oveq2 6048 . . . . . . . . . . . . . 14  |-  ( T  =  0  ->  (
1  -  T )  =  ( 1  -  0 ) )
7140subid1i 9328 . . . . . . . . . . . . . 14  |-  ( 1  -  0 )  =  1
7270, 71syl6eq 2452 . . . . . . . . . . . . 13  |-  ( T  =  0  ->  (
1  -  T )  =  1 )
7372oveq1d 6055 . . . . . . . . . . . 12  |-  ( T  =  0  ->  (
( 1  -  T
)  x.  ( P  -  B ) )  =  ( 1  x.  ( P  -  B
) ) )
7454mulid2d 9062 . . . . . . . . . . . 12  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
1  x.  ( P  -  B ) )  =  ( P  -  B ) )
7573, 74sylan9eqr 2458 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  T  =  0 )  ->  (
( 1  -  T
)  x.  ( P  -  B ) )  =  ( P  -  B ) )
7675fveq2d 5691 . . . . . . . . . 10  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  T  =  0 )  ->  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  =  ( abs `  ( P  -  B )
) )
7769, 76oveq12d 6058 . . . . . . . . 9  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  T  =  0 )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  =  ( 0  +  ( abs `  ( P  -  B
) ) ) )
7854abscld 12193 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( P  -  B ) )  e.  RR )
7978recnd 9070 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( P  -  B ) )  e.  CC )
8079addid2d 9223 . . . . . . . . . . . 12  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
0  +  ( abs `  ( P  -  B
) ) )  =  ( abs `  ( P  -  B )
) )
8131cnmetdval 18758 . . . . . . . . . . . . 13  |-  ( ( P  e.  CC  /\  B  e.  CC )  ->  ( P ( abs 
o.  -  ) B
)  =  ( abs `  ( P  -  B
) ) )
8213, 28, 81syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P ( abs  o.  -  ) B )  =  ( abs `  ( P  -  B )
) )
8380, 82eqtr4d 2439 . . . . . . . . . . 11  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
0  +  ( abs `  ( P  -  B
) ) )  =  ( P ( abs 
o.  -  ) B
) )
8427simprd 450 . . . . . . . . . . 11  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P ( abs  o.  -  ) B )  <  R )
8583, 84eqbrtrd 4192 . . . . . . . . . 10  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
0  +  ( abs `  ( P  -  B
) ) )  < 
R )
8685adantr 452 . . . . . . . . 9  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  T  =  0 )  ->  (
0  +  ( abs `  ( P  -  B
) ) )  < 
R )
8777, 86eqbrtrd 4192 . . . . . . . 8  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  T  =  0 )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  <  R
)
8887adantlr 696 . . . . . . 7  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =  0 )  -> 
( ( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  <  R
)
897, 52absmuld 12211 . . . . . . . . . . . 12  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( T  x.  ( P  -  A
) ) )  =  ( ( abs `  T
)  x.  ( abs `  ( P  -  A
) ) ) )
905simp2d 970 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  0  <_  T )
916, 90absidd 12180 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  T )  =  T )
9291oveq1d 6055 . . . . . . . . . . . 12  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( abs `  T
)  x.  ( abs `  ( P  -  A
) ) )  =  ( T  x.  ( abs `  ( P  -  A ) ) ) )
9389, 92eqtrd 2436 . . . . . . . . . . 11  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( T  x.  ( P  -  A
) ) )  =  ( T  x.  ( abs `  ( P  -  A ) ) ) )
9493ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  ( abs `  ( T  x.  ( P  -  A
) ) )  =  ( T  x.  ( abs `  ( P  -  A ) ) ) )
9531cnmetdval 18758 . . . . . . . . . . . . . 14  |-  ( ( P  e.  CC  /\  A  e.  CC )  ->  ( P ( abs 
o.  -  ) A
)  =  ( abs `  ( P  -  A
) ) )
9613, 18, 95syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P ( abs  o.  -  ) A )  =  ( abs `  ( P  -  A )
) )
9717simprd 450 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P ( abs  o.  -  ) A )  <  R )
9896, 97eqbrtrrd 4194 . . . . . . . . . . . 12  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( P  -  A ) )  < 
R )
9998ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  ( abs `  ( P  -  A ) )  < 
R )
10052abscld 12193 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( P  -  A ) )  e.  RR )
101100ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  ( abs `  ( P  -  A ) )  e.  RR )
102 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  R  e.  RR )
1036ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  T  e.  RR )
1042a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  0  e.  RR )
105104, 6, 90leltned 9180 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
0  <  T  <->  T  =/=  0 ) )
106105biimpar 472 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  T  =/=  0 )  ->  0  <  T )
107106adantlr 696 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  0  <  T )
108 ltmul2 9817 . . . . . . . . . . . 12  |-  ( ( ( abs `  ( P  -  A )
)  e.  RR  /\  R  e.  RR  /\  ( T  e.  RR  /\  0  <  T ) )  -> 
( ( abs `  ( P  -  A )
)  <  R  <->  ( T  x.  ( abs `  ( P  -  A )
) )  <  ( T  x.  R )
) )
109101, 102, 103, 107, 108syl112anc 1188 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  (
( abs `  ( P  -  A )
)  <  R  <->  ( T  x.  ( abs `  ( P  -  A )
) )  <  ( T  x.  R )
) )
11099, 109mpbid 202 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  ( T  x.  ( abs `  ( P  -  A
) ) )  < 
( T  x.  R
) )
11194, 110eqbrtrd 4192 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  ( abs `  ( T  x.  ( P  -  A
) ) )  < 
( T  x.  R
) )
11222, 54absmuld 12211 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  =  ( ( abs `  (
1  -  T ) )  x.  ( abs `  ( P  -  B
) ) ) )
1133a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  1  e.  RR )
1145simp3d 971 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  T  <_  1 )
1156, 113, 114abssubge0d 12189 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( 1  -  T ) )  =  ( 1  -  T
) )
116115oveq1d 6055 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( abs `  (
1  -  T ) )  x.  ( abs `  ( P  -  B
) ) )  =  ( ( 1  -  T )  x.  ( abs `  ( P  -  B ) ) ) )
117112, 116eqtrd 2436 . . . . . . . . . . . 12  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  =  ( ( 1  -  T )  x.  ( abs `  ( P  -  B ) ) ) )
118117adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  =  ( ( 1  -  T )  x.  ( abs `  ( P  -  B ) ) ) )
11978adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( P  -  B ) )  e.  RR )
120 subge0 9497 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  T  e.  RR )  ->  ( 0  <_  (
1  -  T )  <-> 
T  <_  1 ) )
1213, 6, 120sylancr 645 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
0  <_  ( 1  -  T )  <->  T  <_  1 ) )
122114, 121mpbird 224 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  0  <_  ( 1  -  T
) )
12321, 122jca 519 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( 1  -  T
)  e.  RR  /\  0  <_  ( 1  -  T ) ) )
124123adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( 1  -  T
)  e.  RR  /\  0  <_  ( 1  -  T ) ) )
12582, 84eqbrtrrd 4194 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( P  -  B ) )  < 
R )
126125adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( P  -  B ) )  < 
R )
127 ltle 9119 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  ( P  -  B )
)  e.  RR  /\  R  e.  RR )  ->  ( ( abs `  ( P  -  B )
)  <  R  ->  ( abs `  ( P  -  B ) )  <_  R ) )
12878, 127sylan 458 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( abs `  ( P  -  B )
)  <  R  ->  ( abs `  ( P  -  B ) )  <_  R ) )
129126, 128mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( P  -  B ) )  <_  R )
130 lemul2a 9821 . . . . . . . . . . . 12  |-  ( ( ( ( abs `  ( P  -  B )
)  e.  RR  /\  R  e.  RR  /\  (
( 1  -  T
)  e.  RR  /\  0  <_  ( 1  -  T ) ) )  /\  ( abs `  ( P  -  B )
)  <_  R )  ->  ( ( 1  -  T )  x.  ( abs `  ( P  -  B ) ) )  <_  ( ( 1  -  T )  x.  R ) )
131119, 63, 124, 129, 130syl31anc 1187 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( 1  -  T
)  x.  ( abs `  ( P  -  B
) ) )  <_ 
( ( 1  -  T )  x.  R
) )
132118, 131eqbrtrd 4192 . . . . . . . . . 10  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  <_ 
( ( 1  -  T )  x.  R
) )
133132adantr 452 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  <_ 
( ( 1  -  T )  x.  R
) )
13459adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( T  x.  ( P  -  A
) ) )  e.  RR )
13560adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  e.  RR )
136 remulcl 9031 . . . . . . . . . . . 12  |-  ( ( T  e.  RR  /\  R  e.  RR )  ->  ( T  x.  R
)  e.  RR )
1376, 136sylan 458 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( T  x.  R )  e.  RR )
138 remulcl 9031 . . . . . . . . . . . 12  |-  ( ( ( 1  -  T
)  e.  RR  /\  R  e.  RR )  ->  ( ( 1  -  T )  x.  R
)  e.  RR )
13921, 138sylan 458 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( 1  -  T
)  x.  R )  e.  RR )
140 ltleadd 9467 . . . . . . . . . . 11  |-  ( ( ( ( abs `  ( T  x.  ( P  -  A ) ) )  e.  RR  /\  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  e.  RR )  /\  (
( T  x.  R
)  e.  RR  /\  ( ( 1  -  T )  x.  R
)  e.  RR ) )  ->  ( (
( abs `  ( T  x.  ( P  -  A ) ) )  <  ( T  x.  R )  /\  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  <_ 
( ( 1  -  T )  x.  R
) )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  <  (
( T  x.  R
)  +  ( ( 1  -  T )  x.  R ) ) ) )
141134, 135, 137, 139, 140syl22anc 1185 . . . . . . . . . 10  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( ( abs `  ( T  x.  ( P  -  A ) ) )  <  ( T  x.  R )  /\  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  <_ 
( ( 1  -  T )  x.  R
) )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  <  (
( T  x.  R
)  +  ( ( 1  -  T )  x.  R ) ) ) )
142141adantr 452 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  (
( ( abs `  ( T  x.  ( P  -  A ) ) )  <  ( T  x.  R )  /\  ( abs `  ( ( 1  -  T )  x.  ( P  -  B
) ) )  <_ 
( ( 1  -  T )  x.  R
) )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  <  (
( T  x.  R
)  +  ( ( 1  -  T )  x.  R ) ) ) )
143111, 133, 142mp2and 661 . . . . . . . 8  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  <  (
( T  x.  R
)  +  ( ( 1  -  T )  x.  R ) ) )
14442oveq1d 6055 . . . . . . . . . . 11  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  +  ( 1  -  T ) )  x.  R )  =  ( 1  x.  R ) )
145144adantr 452 . . . . . . . . . 10  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( T  +  ( 1  -  T ) )  x.  R )  =  ( 1  x.  R ) )
1467adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  T  e.  CC )
14722adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
1  -  T )  e.  CC )
14863recnd 9070 . . . . . . . . . . 11  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  R  e.  CC )
149146, 147, 148adddird 9069 . . . . . . . . . 10  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( T  +  ( 1  -  T ) )  x.  R )  =  ( ( T  x.  R )  +  ( ( 1  -  T )  x.  R
) ) )
150148mulid2d 9062 . . . . . . . . . 10  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
1  x.  R )  =  R )
151145, 149, 1503eqtr3d 2444 . . . . . . . . 9  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( T  x.  R
)  +  ( ( 1  -  T )  x.  R ) )  =  R )
152151adantr 452 . . . . . . . 8  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  (
( T  x.  R
)  +  ( ( 1  -  T )  x.  R ) )  =  R )
153143, 152breqtrd 4196 . . . . . . 7  |-  ( ( ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  /\  T  =/=  0 )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  <  R
)
15488, 153pm2.61dane 2645 . . . . . 6  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  (
( abs `  ( T  x.  ( P  -  A ) ) )  +  ( abs `  (
( 1  -  T
)  x.  ( P  -  B ) ) ) )  <  R
)
15558, 62, 63, 65, 154lelttrd 9184 . . . . 5  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  e.  RR )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  < 
R )
15657adantr 452 . . . . . . 7  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  = 
+oo )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  e.  RR )
157 ltpnf 10677 . . . . . . 7  |-  ( ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B
) ) ) )  e.  RR  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  <  +oo )
158156, 157syl 16 . . . . . 6  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  = 
+oo )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  <  +oo )
159 simpr 448 . . . . . 6  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  = 
+oo )  ->  R  =  +oo )
160158, 159breqtrrd 4198 . . . . 5  |-  ( ( ( ( P  e.  CC  /\  R  e. 
RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  ( 0 [,] 1 ) ) )  /\  R  = 
+oo )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  < 
R )
161 0xr 9087 . . . . . . . . . . 11  |-  0  e.  RR*
162161a1i 11 . . . . . . . . . 10  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  0  e.  RR* )
163100rexrd 9090 . . . . . . . . . 10  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( P  -  A ) )  e. 
RR* )
16452absge0d 12201 . . . . . . . . . 10  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  0  <_  ( abs `  ( P  -  A )
) )
165162, 163, 14, 164, 98xrlelttrd 10706 . . . . . . . . 9  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  0  <  R )
166 xrltle 10698 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  R  e.  RR* )  ->  (
0  <  R  ->  0  <_  R ) )
167161, 14, 166sylancr 645 . . . . . . . . 9  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
0  <  R  ->  0  <_  R ) )
168165, 167mpd 15 . . . . . . . 8  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  0  <_  R )
169 ge0nemnf 10717 . . . . . . . 8  |-  ( ( R  e.  RR*  /\  0  <_  R )  ->  R  =/=  -oo )
17014, 168, 169syl2anc 643 . . . . . . 7  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  R  =/=  -oo )
17114, 170jca 519 . . . . . 6  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( R  e.  RR*  /\  R  =/=  -oo ) )
172 xrnemnf 10674 . . . . . 6  |-  ( ( R  e.  RR*  /\  R  =/=  -oo )  <->  ( R  e.  RR  \/  R  = 
+oo ) )
173171, 172sylib 189 . . . . 5  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( R  e.  RR  \/  R  =  +oo ) )
174155, 160, 173mpjaodan 762 . . . 4  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( abs `  ( ( T  x.  ( P  -  A ) )  +  ( ( 1  -  T )  x.  ( P  -  B )
) ) )  < 
R )
17551, 174eqbrtrd 4192 . . 3  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  ( P ( abs  o.  -  ) ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) )  <  R )
176 elbl 18371 . . . 4  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  P  e.  CC  /\  R  e.  RR* )  ->  (
( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )  e.  ( P ( ball `  ( abs  o.  -  ) ) R )  <->  ( (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  CC  /\  ( P ( abs  o.  -  ) ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) )  <  R ) ) )
17712, 13, 14, 176syl3anc 1184 . . 3  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( ( T  x.  A )  +  ( ( 1  -  T
)  x.  B ) )  e.  ( P ( ball `  ( abs  o.  -  ) ) R )  <->  ( (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  CC  /\  ( P ( abs  o.  -  ) ( ( T  x.  A )  +  ( ( 1  -  T )  x.  B ) ) )  <  R ) ) )
17830, 175, 177mpbir2and 889 . 2  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  ( P (
ball `  ( abs  o. 
-  ) ) R ) )
179178, 9syl6eleqr 2495 1  |-  ( ( ( P  e.  CC  /\  R  e.  RR* )  /\  ( A  e.  S  /\  B  e.  S  /\  T  e.  (
0 [,] 1 ) ) )  ->  (
( T  x.  A
)  +  ( ( 1  -  T )  x.  B ) )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172    o. ccom 4841   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    +oocpnf 9073    -oocmnf 9074   RR*cxr 9075    < clt 9076    <_ cle 9077    - cmin 9247   [,]cicc 10875   abscabs 11994   * Metcxmt 16641   ballcbl 16643
This theorem is referenced by:  dvlipcn  19831  blscon  24884
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-xadd 10667  df-icc 10879  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652
  Copyright terms: Public domain W3C validator