MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcld Structured version   Unicode version

Theorem blcld 20759
Description: A "closed ball" in a metric space is actually closed. (Contributed by Mario Carneiro, 31-Dec-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
mopni.1  |-  J  =  ( MetOpen `  D )
blcld.3  |-  S  =  { z  e.  X  |  ( P D z )  <_  R }
Assertion
Ref Expression
blcld  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  S  e.  ( Clsd `  J ) )
Distinct variable groups:    z, D    z, R    z, P    z, X
Allowed substitution hints:    S( z)    J( z)

Proof of Theorem blcld
Dummy variables  x  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mopni.1 . . . . . 6  |-  J  =  ( MetOpen `  D )
21mopnuni 20695 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
323ad2ant1 1017 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  X  =  U. J
)
43difeq1d 3621 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( X  \  S
)  =  ( U. J  \  S ) )
5 difssd 3632 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( X  \  S
)  C_  X )
6 simpl3 1001 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  R  e.  RR* )
7 simpl1 999 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  D  e.  ( *Met `  X
) )
8 simpl2 1000 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  P  e.  X )
9 eldifi 3626 . . . . . . . . 9  |-  ( y  e.  ( X  \  S )  ->  y  e.  X )
109adantl 466 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  y  e.  X )
11 xmetcl 20585 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  y  e.  X
)  ->  ( P D y )  e. 
RR* )
127, 8, 10, 11syl3anc 1228 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  ( P D y )  e. 
RR* )
13 eldif 3486 . . . . . . . . . 10  |-  ( y  e.  ( X  \  S )  <->  ( y  e.  X  /\  -.  y  e.  S ) )
14 oveq2 6291 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  ( P D z )  =  ( P D y ) )
1514breq1d 4457 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
( P D z )  <_  R  <->  ( P D y )  <_  R ) )
16 blcld.3 . . . . . . . . . . . . 13  |-  S  =  { z  e.  X  |  ( P D z )  <_  R }
1715, 16elrab2 3263 . . . . . . . . . . . 12  |-  ( y  e.  S  <->  ( y  e.  X  /\  ( P D y )  <_  R ) )
1817simplbi2 625 . . . . . . . . . . 11  |-  ( y  e.  X  ->  (
( P D y )  <_  R  ->  y  e.  S ) )
1918con3dimp 441 . . . . . . . . . 10  |-  ( ( y  e.  X  /\  -.  y  e.  S
)  ->  -.  ( P D y )  <_  R )
2013, 19sylbi 195 . . . . . . . . 9  |-  ( y  e.  ( X  \  S )  ->  -.  ( P D y )  <_  R )
2120adantl 466 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  -.  ( P D y )  <_  R )
22 xrltnle 9652 . . . . . . . . 9  |-  ( ( R  e.  RR*  /\  ( P D y )  e. 
RR* )  ->  ( R  <  ( P D y )  <->  -.  ( P D y )  <_  R ) )
236, 12, 22syl2anc 661 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  ( R  <  ( P D y )  <->  -.  ( P D y )  <_  R ) )
2421, 23mpbird 232 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  R  <  ( P D y ) )
25 qbtwnxr 11398 . . . . . . 7  |-  ( ( R  e.  RR*  /\  ( P D y )  e. 
RR*  /\  R  <  ( P D y ) )  ->  E. x  e.  QQ  ( R  < 
x  /\  x  <  ( P D y ) ) )
266, 12, 24, 25syl3anc 1228 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  E. x  e.  QQ  ( R  < 
x  /\  x  <  ( P D y ) ) )
27 qre 11186 . . . . . . . 8  |-  ( x  e.  QQ  ->  x  e.  RR )
287adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  D  e.  ( *Met `  X
) )
2910adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  y  e.  X )
3012adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( P D y )  e. 
RR* )
31 rexr 9638 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  x  e.  RR* )
3231ad2antrl 727 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  x  e.  RR* )
3332xnegcld 11491 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  -e x  e.  RR* )
3430, 33xaddcld 11492 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( ( P D y ) +e  -e x )  e.  RR* )
35 blelrn 20671 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  ( ( P D y ) +e  -e x )  e. 
RR* )  ->  (
y ( ball `  D
) ( ( P D y ) +e  -e x ) )  e.  ran  ( ball `  D )
)
3628, 29, 34, 35syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( y
( ball `  D )
( ( P D y ) +e  -e x ) )  e.  ran  ( ball `  D ) )
37 simprrr 764 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  x  <  ( P D y ) )
38 xposdif 11453 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR*  /\  ( P D y )  e. 
RR* )  ->  (
x  <  ( P D y )  <->  0  <  ( ( P D y ) +e  -e x ) ) )
3932, 30, 38syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( x  <  ( P D y )  <->  0  <  (
( P D y ) +e  -e x ) ) )
4037, 39mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  0  <  ( ( P D y ) +e  -e x ) )
41 xblcntr 20665 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  ( ( ( P D y ) +e  -e x )  e.  RR*  /\  0  <  ( ( P D y ) +e  -e x ) ) )  ->  y  e.  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) ) )
4228, 29, 34, 40, 41syl112anc 1232 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  y  e.  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) ) )
43 incom 3691 . . . . . . . . . . . . 13  |-  ( ( y ( ball `  D
) ( ( P D y ) +e  -e x ) )  i^i  ( P ( ball `  D
) x ) )  =  ( ( P ( ball `  D
) x )  i^i  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) ) )
448adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  P  e.  X )
45 xaddcom 11436 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR*  /\  (
( P D y ) +e  -e x )  e. 
RR* )  ->  (
x +e ( ( P D y ) +e  -e x ) )  =  ( ( ( P D y ) +e  -e
x ) +e
x ) )
4632, 34, 45syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( x +e ( ( P D y ) +e  -e
x ) )  =  ( ( ( P D y ) +e  -e x ) +e x ) )
47 simprl 755 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  x  e.  RR )
48 xnpcan 11443 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P D y )  e.  RR*  /\  x  e.  RR )  ->  (
( ( P D y ) +e  -e x ) +e x )  =  ( P D y ) )
4930, 47, 48syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( (
( P D y ) +e  -e x ) +e x )  =  ( P D y ) )
5046, 49eqtrd 2508 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( x +e ( ( P D y ) +e  -e
x ) )  =  ( P D y ) )
51 xrleid 11355 . . . . . . . . . . . . . . . 16  |-  ( ( P D y )  e.  RR*  ->  ( P D y )  <_ 
( P D y ) )
5230, 51syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( P D y )  <_ 
( P D y ) )
5350, 52eqbrtrd 4467 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( x +e ( ( P D y ) +e  -e
x ) )  <_ 
( P D y ) )
54 bldisj 20652 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  y  e.  X
)  /\  ( x  e.  RR*  /\  ( ( P D y ) +e  -e
x )  e.  RR*  /\  ( x +e
( ( P D y ) +e  -e x ) )  <_  ( P D y ) ) )  ->  ( ( P ( ball `  D
) x )  i^i  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) ) )  =  (/) )
5528, 44, 29, 32, 34, 53, 54syl33anc 1243 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( ( P ( ball `  D
) x )  i^i  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) ) )  =  (/) )
5643, 55syl5eq 2520 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( (
y ( ball `  D
) ( ( P D y ) +e  -e x ) )  i^i  ( P ( ball `  D
) x ) )  =  (/) )
57 blssm 20672 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  ( ( P D y ) +e  -e x )  e. 
RR* )  ->  (
y ( ball `  D
) ( ( P D y ) +e  -e x ) )  C_  X
)
5828, 29, 34, 57syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( y
( ball `  D )
( ( P D y ) +e  -e x ) ) 
C_  X )
59 reldisj 3870 . . . . . . . . . . . . 13  |-  ( ( y ( ball `  D
) ( ( P D y ) +e  -e x ) )  C_  X  ->  ( ( ( y ( ball `  D
) ( ( P D y ) +e  -e x ) )  i^i  ( P ( ball `  D
) x ) )  =  (/)  <->  ( y (
ball `  D )
( ( P D y ) +e  -e x ) ) 
C_  ( X  \ 
( P ( ball `  D ) x ) ) ) )
6058, 59syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( (
( y ( ball `  D ) ( ( P D y ) +e  -e
x ) )  i^i  ( P ( ball `  D ) x ) )  =  (/)  <->  ( y
( ball `  D )
( ( P D y ) +e  -e x ) ) 
C_  ( X  \ 
( P ( ball `  D ) x ) ) ) )
6156, 60mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( y
( ball `  D )
( ( P D y ) +e  -e x ) ) 
C_  ( X  \ 
( P ( ball `  D ) x ) ) )
626adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  R  e.  RR* )
63 simprrl 763 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  R  <  x )
641, 16blsscls2 20758 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  x  e.  RR*  /\  R  < 
x ) )  ->  S  C_  ( P (
ball `  D )
x ) )
6528, 44, 62, 32, 63, 64syl23anc 1235 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  S  C_  ( P ( ball `  D
) x ) )
6665sscond 3641 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( X  \  ( P ( ball `  D ) x ) )  C_  ( X  \  S ) )
6761, 66sstrd 3514 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( y
( ball `  D )
( ( P D y ) +e  -e x ) ) 
C_  ( X  \  S ) )
68 eleq2 2540 . . . . . . . . . . . 12  |-  ( w  =  ( y (
ball `  D )
( ( P D y ) +e  -e x ) )  ->  ( y  e.  w  <->  y  e.  ( y ( ball `  D
) ( ( P D y ) +e  -e x ) ) ) )
69 sseq1 3525 . . . . . . . . . . . 12  |-  ( w  =  ( y (
ball `  D )
( ( P D y ) +e  -e x ) )  ->  ( w  C_  ( X  \  S )  <-> 
( y ( ball `  D ) ( ( P D y ) +e  -e
x ) )  C_  ( X  \  S ) ) )
7068, 69anbi12d 710 . . . . . . . . . . 11  |-  ( w  =  ( y (
ball `  D )
( ( P D y ) +e  -e x ) )  ->  ( ( y  e.  w  /\  w  C_  ( X  \  S
) )  <->  ( y  e.  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) )  /\  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) )  C_  ( X  \  S ) ) ) )
7170rspcev 3214 . . . . . . . . . 10  |-  ( ( ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) )  e. 
ran  ( ball `  D
)  /\  ( y  e.  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) )  /\  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) )  C_  ( X  \  S ) ) )  ->  E. w  e.  ran  ( ball `  D
) ( y  e.  w  /\  w  C_  ( X  \  S ) ) )
7236, 42, 67, 71syl12anc 1226 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  E. w  e.  ran  ( ball `  D
) ( y  e.  w  /\  w  C_  ( X  \  S ) ) )
7372expr 615 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  x  e.  RR )  ->  (
( R  <  x  /\  x  <  ( P D y ) )  ->  E. w  e.  ran  ( ball `  D )
( y  e.  w  /\  w  C_  ( X 
\  S ) ) ) )
7427, 73sylan2 474 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  x  e.  QQ )  ->  (
( R  <  x  /\  x  <  ( P D y ) )  ->  E. w  e.  ran  ( ball `  D )
( y  e.  w  /\  w  C_  ( X 
\  S ) ) ) )
7574rexlimdva 2955 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  ( E. x  e.  QQ  ( R  <  x  /\  x  <  ( P D y ) )  ->  E. w  e.  ran  ( ball `  D
) ( y  e.  w  /\  w  C_  ( X  \  S ) ) ) )
7626, 75mpd 15 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  E. w  e.  ran  ( ball `  D
) ( y  e.  w  /\  w  C_  ( X  \  S ) ) )
7776ralrimiva 2878 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  A. y  e.  ( X  \  S ) E. w  e.  ran  ( ball `  D )
( y  e.  w  /\  w  C_  ( X 
\  S ) ) )
781elmopn 20696 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
( X  \  S
)  e.  J  <->  ( ( X  \  S )  C_  X  /\  A. y  e.  ( X  \  S
) E. w  e. 
ran  ( ball `  D
) ( y  e.  w  /\  w  C_  ( X  \  S ) ) ) ) )
79783ad2ant1 1017 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( ( X  \  S )  e.  J  <->  ( ( X  \  S
)  C_  X  /\  A. y  e.  ( X 
\  S ) E. w  e.  ran  ( ball `  D ) ( y  e.  w  /\  w  C_  ( X  \  S ) ) ) ) )
805, 77, 79mpbir2and 920 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( X  \  S
)  e.  J )
814, 80eqeltrrd 2556 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( U. J  \  S )  e.  J
)
821mopntop 20694 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
83823ad2ant1 1017 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  J  e.  Top )
84 ssrab2 3585 . . . . 5  |-  { z  e.  X  |  ( P D z )  <_  R }  C_  X
8516, 84eqsstri 3534 . . . 4  |-  S  C_  X
8685, 3syl5sseq 3552 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  S  C_  U. J )
87 eqid 2467 . . . 4  |-  U. J  =  U. J
8887iscld2 19311 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( S  e.  ( Clsd `  J
)  <->  ( U. J  \  S )  e.  J
) )
8983, 86, 88syl2anc 661 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( S  e.  (
Clsd `  J )  <->  ( U. J  \  S
)  e.  J ) )
9081, 89mpbird 232 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  S  e.  ( Clsd `  J ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   {crab 2818    \ cdif 3473    i^i cin 3475    C_ wss 3476   (/)c0 3785   U.cuni 4245   class class class wbr 4447   ran crn 5000   ` cfv 5587  (class class class)co 6283   RRcr 9490   0cc0 9491   RR*cxr 9626    < clt 9627    <_ cle 9628   QQcq 11181    -ecxne 11314   +ecxad 11315   *Metcxmt 18190   ballcbl 18192   MetOpencmopn 18195   Topctop 19177   Clsdccld 19299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-om 6680  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7900  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-n0 10795  df-z 10864  df-uz 11082  df-q 11182  df-rp 11220  df-xneg 11317  df-xadd 11318  df-xmul 11319  df-topgen 14698  df-psmet 18198  df-xmet 18199  df-bl 18201  df-mopn 18202  df-top 19182  df-bases 19184  df-topon 19185  df-cld 19302
This theorem is referenced by:  blcls  20760  lmle  21491  minveclem4  21598  lhop1lem  22165  ftalem3  23092  ubthlem1  25478
  Copyright terms: Public domain W3C validator