MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcld Structured version   Unicode version

Theorem blcld 20039
Description: A "closed ball" in a metric space is actually closed. (Contributed by Mario Carneiro, 31-Dec-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
mopni.1  |-  J  =  ( MetOpen `  D )
blcld.3  |-  S  =  { z  e.  X  |  ( P D z )  <_  R }
Assertion
Ref Expression
blcld  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  S  e.  ( Clsd `  J ) )
Distinct variable groups:    z, D    z, R    z, P    z, X
Allowed substitution hints:    S( z)    J( z)

Proof of Theorem blcld
Dummy variables  x  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mopni.1 . . . . . 6  |-  J  =  ( MetOpen `  D )
21mopnuni 19975 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
323ad2ant1 1004 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  X  =  U. J
)
43difeq1d 3470 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( X  \  S
)  =  ( U. J  \  S ) )
5 difssd 3481 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( X  \  S
)  C_  X )
6 simpl3 988 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  R  e.  RR* )
7 simpl1 986 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  D  e.  ( *Met `  X
) )
8 simpl2 987 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  P  e.  X )
9 eldifi 3475 . . . . . . . . 9  |-  ( y  e.  ( X  \  S )  ->  y  e.  X )
109adantl 463 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  y  e.  X )
11 xmetcl 19865 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  y  e.  X
)  ->  ( P D y )  e. 
RR* )
127, 8, 10, 11syl3anc 1213 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  ( P D y )  e. 
RR* )
13 eldif 3335 . . . . . . . . . 10  |-  ( y  e.  ( X  \  S )  <->  ( y  e.  X  /\  -.  y  e.  S ) )
14 oveq2 6098 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  ( P D z )  =  ( P D y ) )
1514breq1d 4299 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
( P D z )  <_  R  <->  ( P D y )  <_  R ) )
16 blcld.3 . . . . . . . . . . . . 13  |-  S  =  { z  e.  X  |  ( P D z )  <_  R }
1715, 16elrab2 3116 . . . . . . . . . . . 12  |-  ( y  e.  S  <->  ( y  e.  X  /\  ( P D y )  <_  R ) )
1817simplbi2 622 . . . . . . . . . . 11  |-  ( y  e.  X  ->  (
( P D y )  <_  R  ->  y  e.  S ) )
1918con3and 439 . . . . . . . . . 10  |-  ( ( y  e.  X  /\  -.  y  e.  S
)  ->  -.  ( P D y )  <_  R )
2013, 19sylbi 195 . . . . . . . . 9  |-  ( y  e.  ( X  \  S )  ->  -.  ( P D y )  <_  R )
2120adantl 463 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  -.  ( P D y )  <_  R )
22 xrltnle 9439 . . . . . . . . 9  |-  ( ( R  e.  RR*  /\  ( P D y )  e. 
RR* )  ->  ( R  <  ( P D y )  <->  -.  ( P D y )  <_  R ) )
236, 12, 22syl2anc 656 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  ( R  <  ( P D y )  <->  -.  ( P D y )  <_  R ) )
2421, 23mpbird 232 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  R  <  ( P D y ) )
25 qbtwnxr 11166 . . . . . . 7  |-  ( ( R  e.  RR*  /\  ( P D y )  e. 
RR*  /\  R  <  ( P D y ) )  ->  E. x  e.  QQ  ( R  < 
x  /\  x  <  ( P D y ) ) )
266, 12, 24, 25syl3anc 1213 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  E. x  e.  QQ  ( R  < 
x  /\  x  <  ( P D y ) ) )
27 qre 10954 . . . . . . . 8  |-  ( x  e.  QQ  ->  x  e.  RR )
287adantr 462 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  D  e.  ( *Met `  X
) )
2910adantr 462 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  y  e.  X )
3012adantr 462 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( P D y )  e. 
RR* )
31 rexr 9425 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  x  e.  RR* )
3231ad2antrl 722 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  x  e.  RR* )
3332xnegcld 11259 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  -e x  e.  RR* )
3430, 33xaddcld 11260 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( ( P D y ) +e  -e x )  e.  RR* )
35 blelrn 19951 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  ( ( P D y ) +e  -e x )  e. 
RR* )  ->  (
y ( ball `  D
) ( ( P D y ) +e  -e x ) )  e.  ran  ( ball `  D )
)
3628, 29, 34, 35syl3anc 1213 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( y
( ball `  D )
( ( P D y ) +e  -e x ) )  e.  ran  ( ball `  D ) )
37 simprrr 759 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  x  <  ( P D y ) )
38 xposdif 11221 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR*  /\  ( P D y )  e. 
RR* )  ->  (
x  <  ( P D y )  <->  0  <  ( ( P D y ) +e  -e x ) ) )
3932, 30, 38syl2anc 656 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( x  <  ( P D y )  <->  0  <  (
( P D y ) +e  -e x ) ) )
4037, 39mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  0  <  ( ( P D y ) +e  -e x ) )
41 xblcntr 19945 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  ( ( ( P D y ) +e  -e x )  e.  RR*  /\  0  <  ( ( P D y ) +e  -e x ) ) )  ->  y  e.  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) ) )
4228, 29, 34, 40, 41syl112anc 1217 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  y  e.  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) ) )
43 incom 3540 . . . . . . . . . . . . 13  |-  ( ( y ( ball `  D
) ( ( P D y ) +e  -e x ) )  i^i  ( P ( ball `  D
) x ) )  =  ( ( P ( ball `  D
) x )  i^i  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) ) )
448adantr 462 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  P  e.  X )
45 xaddcom 11204 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR*  /\  (
( P D y ) +e  -e x )  e. 
RR* )  ->  (
x +e ( ( P D y ) +e  -e x ) )  =  ( ( ( P D y ) +e  -e
x ) +e
x ) )
4632, 34, 45syl2anc 656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( x +e ( ( P D y ) +e  -e
x ) )  =  ( ( ( P D y ) +e  -e x ) +e x ) )
47 simprl 750 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  x  e.  RR )
48 xnpcan 11211 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P D y )  e.  RR*  /\  x  e.  RR )  ->  (
( ( P D y ) +e  -e x ) +e x )  =  ( P D y ) )
4930, 47, 48syl2anc 656 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( (
( P D y ) +e  -e x ) +e x )  =  ( P D y ) )
5046, 49eqtrd 2473 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( x +e ( ( P D y ) +e  -e
x ) )  =  ( P D y ) )
51 xrleid 11123 . . . . . . . . . . . . . . . 16  |-  ( ( P D y )  e.  RR*  ->  ( P D y )  <_ 
( P D y ) )
5230, 51syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( P D y )  <_ 
( P D y ) )
5350, 52eqbrtrd 4309 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( x +e ( ( P D y ) +e  -e
x ) )  <_ 
( P D y ) )
54 bldisj 19932 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  y  e.  X
)  /\  ( x  e.  RR*  /\  ( ( P D y ) +e  -e
x )  e.  RR*  /\  ( x +e
( ( P D y ) +e  -e x ) )  <_  ( P D y ) ) )  ->  ( ( P ( ball `  D
) x )  i^i  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) ) )  =  (/) )
5528, 44, 29, 32, 34, 53, 54syl33anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( ( P ( ball `  D
) x )  i^i  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) ) )  =  (/) )
5643, 55syl5eq 2485 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( (
y ( ball `  D
) ( ( P D y ) +e  -e x ) )  i^i  ( P ( ball `  D
) x ) )  =  (/) )
57 blssm 19952 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( *Met `  X )  /\  y  e.  X  /\  ( ( P D y ) +e  -e x )  e. 
RR* )  ->  (
y ( ball `  D
) ( ( P D y ) +e  -e x ) )  C_  X
)
5828, 29, 34, 57syl3anc 1213 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( y
( ball `  D )
( ( P D y ) +e  -e x ) ) 
C_  X )
59 reldisj 3719 . . . . . . . . . . . . 13  |-  ( ( y ( ball `  D
) ( ( P D y ) +e  -e x ) )  C_  X  ->  ( ( ( y ( ball `  D
) ( ( P D y ) +e  -e x ) )  i^i  ( P ( ball `  D
) x ) )  =  (/)  <->  ( y (
ball `  D )
( ( P D y ) +e  -e x ) ) 
C_  ( X  \ 
( P ( ball `  D ) x ) ) ) )
6058, 59syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( (
( y ( ball `  D ) ( ( P D y ) +e  -e
x ) )  i^i  ( P ( ball `  D ) x ) )  =  (/)  <->  ( y
( ball `  D )
( ( P D y ) +e  -e x ) ) 
C_  ( X  \ 
( P ( ball `  D ) x ) ) ) )
6156, 60mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( y
( ball `  D )
( ( P D y ) +e  -e x ) ) 
C_  ( X  \ 
( P ( ball `  D ) x ) ) )
626adantr 462 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  R  e.  RR* )
63 simprrl 758 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  R  <  x )
641, 16blsscls2 20038 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  x  e.  RR*  /\  R  < 
x ) )  ->  S  C_  ( P (
ball `  D )
x ) )
6528, 44, 62, 32, 63, 64syl23anc 1220 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  S  C_  ( P ( ball `  D
) x ) )
6665sscond 3490 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( X  \  ( P ( ball `  D ) x ) )  C_  ( X  \  S ) )
6761, 66sstrd 3363 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  ( y
( ball `  D )
( ( P D y ) +e  -e x ) ) 
C_  ( X  \  S ) )
68 eleq2 2502 . . . . . . . . . . . 12  |-  ( w  =  ( y (
ball `  D )
( ( P D y ) +e  -e x ) )  ->  ( y  e.  w  <->  y  e.  ( y ( ball `  D
) ( ( P D y ) +e  -e x ) ) ) )
69 sseq1 3374 . . . . . . . . . . . 12  |-  ( w  =  ( y (
ball `  D )
( ( P D y ) +e  -e x ) )  ->  ( w  C_  ( X  \  S )  <-> 
( y ( ball `  D ) ( ( P D y ) +e  -e
x ) )  C_  ( X  \  S ) ) )
7068, 69anbi12d 705 . . . . . . . . . . 11  |-  ( w  =  ( y (
ball `  D )
( ( P D y ) +e  -e x ) )  ->  ( ( y  e.  w  /\  w  C_  ( X  \  S
) )  <->  ( y  e.  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) )  /\  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) )  C_  ( X  \  S ) ) ) )
7170rspcev 3070 . . . . . . . . . 10  |-  ( ( ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) )  e. 
ran  ( ball `  D
)  /\  ( y  e.  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) )  /\  ( y ( ball `  D ) ( ( P D y ) +e  -e
x ) )  C_  ( X  \  S ) ) )  ->  E. w  e.  ran  ( ball `  D
) ( y  e.  w  /\  w  C_  ( X  \  S ) ) )
7236, 42, 67, 71syl12anc 1211 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  (
x  e.  RR  /\  ( R  <  x  /\  x  <  ( P D y ) ) ) )  ->  E. w  e.  ran  ( ball `  D
) ( y  e.  w  /\  w  C_  ( X  \  S ) ) )
7372expr 612 . . . . . . . 8  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  x  e.  RR )  ->  (
( R  <  x  /\  x  <  ( P D y ) )  ->  E. w  e.  ran  ( ball `  D )
( y  e.  w  /\  w  C_  ( X 
\  S ) ) ) )
7427, 73sylan2 471 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e. 
RR* )  /\  y  e.  ( X  \  S
) )  /\  x  e.  QQ )  ->  (
( R  <  x  /\  x  <  ( P D y ) )  ->  E. w  e.  ran  ( ball `  D )
( y  e.  w  /\  w  C_  ( X 
\  S ) ) ) )
7574rexlimdva 2839 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  ( E. x  e.  QQ  ( R  <  x  /\  x  <  ( P D y ) )  ->  E. w  e.  ran  ( ball `  D
) ( y  e.  w  /\  w  C_  ( X  \  S ) ) ) )
7626, 75mpd 15 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X  /\  R  e.  RR* )  /\  y  e.  ( X  \  S ) )  ->  E. w  e.  ran  ( ball `  D
) ( y  e.  w  /\  w  C_  ( X  \  S ) ) )
7776ralrimiva 2797 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  A. y  e.  ( X  \  S ) E. w  e.  ran  ( ball `  D )
( y  e.  w  /\  w  C_  ( X 
\  S ) ) )
781elmopn 19976 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  (
( X  \  S
)  e.  J  <->  ( ( X  \  S )  C_  X  /\  A. y  e.  ( X  \  S
) E. w  e. 
ran  ( ball `  D
) ( y  e.  w  /\  w  C_  ( X  \  S ) ) ) ) )
79783ad2ant1 1004 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( ( X  \  S )  e.  J  <->  ( ( X  \  S
)  C_  X  /\  A. y  e.  ( X 
\  S ) E. w  e.  ran  ( ball `  D ) ( y  e.  w  /\  w  C_  ( X  \  S ) ) ) ) )
805, 77, 79mpbir2and 908 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( X  \  S
)  e.  J )
814, 80eqeltrrd 2516 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( U. J  \  S )  e.  J
)
821mopntop 19974 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
83823ad2ant1 1004 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  J  e.  Top )
84 ssrab2 3434 . . . . 5  |-  { z  e.  X  |  ( P D z )  <_  R }  C_  X
8516, 84eqsstri 3383 . . . 4  |-  S  C_  X
8685, 3syl5sseq 3401 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  S  C_  U. J )
87 eqid 2441 . . . 4  |-  U. J  =  U. J
8887iscld2 18591 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( S  e.  ( Clsd `  J
)  <->  ( U. J  \  S )  e.  J
) )
8983, 86, 88syl2anc 656 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( S  e.  (
Clsd `  J )  <->  ( U. J  \  S
)  e.  J ) )
9081, 89mpbird 232 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  S  e.  ( Clsd `  J ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   A.wral 2713   E.wrex 2714   {crab 2717    \ cdif 3322    i^i cin 3324    C_ wss 3325   (/)c0 3634   U.cuni 4088   class class class wbr 4289   ran crn 4837   ` cfv 5415  (class class class)co 6090   RRcr 9277   0cc0 9278   RR*cxr 9413    < clt 9414    <_ cle 9415   QQcq 10949    -ecxne 11082   +ecxad 11083   *Metcxmt 17760   ballcbl 17762   MetOpencmopn 17765   Topctop 18457   Clsdccld 18579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-n0 10576  df-z 10643  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-topgen 14378  df-psmet 17768  df-xmet 17769  df-bl 17771  df-mopn 17772  df-top 18462  df-bases 18464  df-topon 18465  df-cld 18582
This theorem is referenced by:  blcls  20040  lmle  20771  minveclem4  20878  lhop1lem  21444  ftalem3  22371  ubthlem1  24206
  Copyright terms: Public domain W3C validator