Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blbnd Structured version   Unicode version

Theorem blbnd 29873
Description: A ball is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 15-Jan-2014.)
Assertion
Ref Expression
blbnd  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  X  /\  R  e.  RR )  ->  ( M  |`  ( ( Y (
ball `  M ) R )  X.  ( Y ( ball `  M
) R ) ) )  e.  ( Bnd `  ( Y ( ball `  M ) R ) ) )

Proof of Theorem blbnd
Dummy variables  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 991 . . . . 5  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  X  /\  R  e.  RR )  ->  M  e.  ( *Met `  X
) )
2 rexr 9628 . . . . . 6  |-  ( R  e.  RR  ->  R  e.  RR* )
3 blssm 20649 . . . . . 6  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  X  /\  R  e.  RR* )  ->  ( Y ( ball `  M ) R ) 
C_  X )
42, 3syl3an3 1258 . . . . 5  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  X  /\  R  e.  RR )  ->  ( Y (
ball `  M ) R )  C_  X
)
5 xmetres2 20592 . . . . 5  |-  ( ( M  e.  ( *Met `  X )  /\  ( Y (
ball `  M ) R )  C_  X
)  ->  ( M  |`  ( ( Y (
ball `  M ) R )  X.  ( Y ( ball `  M
) R ) ) )  e.  ( *Met `  ( Y ( ball `  M
) R ) ) )
61, 4, 5syl2anc 661 . . . 4  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  X  /\  R  e.  RR )  ->  ( M  |`  ( ( Y (
ball `  M ) R )  X.  ( Y ( ball `  M
) R ) ) )  e.  ( *Met `  ( Y ( ball `  M
) R ) ) )
76adantr 465 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  R  e.  RR )  /\  ( Y (
ball `  M ) R )  =  (/) )  ->  ( M  |`  ( ( Y (
ball `  M ) R )  X.  ( Y ( ball `  M
) R ) ) )  e.  ( *Met `  ( Y ( ball `  M
) R ) ) )
8 rzal 3922 . . . 4  |-  ( ( Y ( ball `  M
) R )  =  (/)  ->  A. x  e.  ( Y ( ball `  M
) R ) E. r  e.  RR+  ( Y ( ball `  M
) R )  =  ( x ( ball `  ( M  |`  (
( Y ( ball `  M ) R )  X.  ( Y (
ball `  M ) R ) ) ) ) r ) )
98adantl 466 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  R  e.  RR )  /\  ( Y (
ball `  M ) R )  =  (/) )  ->  A. x  e.  ( Y ( ball `  M
) R ) E. r  e.  RR+  ( Y ( ball `  M
) R )  =  ( x ( ball `  ( M  |`  (
( Y ( ball `  M ) R )  X.  ( Y (
ball `  M ) R ) ) ) ) r ) )
10 isbndx 29868 . . 3  |-  ( ( M  |`  ( ( Y ( ball `  M
) R )  X.  ( Y ( ball `  M ) R ) ) )  e.  ( Bnd `  ( Y ( ball `  M
) R ) )  <-> 
( ( M  |`  ( ( Y (
ball `  M ) R )  X.  ( Y ( ball `  M
) R ) ) )  e.  ( *Met `  ( Y ( ball `  M
) R ) )  /\  A. x  e.  ( Y ( ball `  M ) R ) E. r  e.  RR+  ( Y ( ball `  M
) R )  =  ( x ( ball `  ( M  |`  (
( Y ( ball `  M ) R )  X.  ( Y (
ball `  M ) R ) ) ) ) r ) ) )
117, 9, 10sylanbrc 664 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  R  e.  RR )  /\  ( Y (
ball `  M ) R )  =  (/) )  ->  ( M  |`  ( ( Y (
ball `  M ) R )  X.  ( Y ( ball `  M
) R ) ) )  e.  ( Bnd `  ( Y ( ball `  M ) R ) ) )
126adantr 465 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  R  e.  RR )  /\  ( Y (
ball `  M ) R )  =/=  (/) )  -> 
( M  |`  (
( Y ( ball `  M ) R )  X.  ( Y (
ball `  M ) R ) ) )  e.  ( *Met `  ( Y ( ball `  M ) R ) ) )
131adantr 465 . . . . . 6  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  R  e.  RR )  /\  ( Y (
ball `  M ) R )  =/=  (/) )  ->  M  e.  ( *Met `  X ) )
14 simpl2 995 . . . . . 6  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  R  e.  RR )  /\  ( Y (
ball `  M ) R )  =/=  (/) )  ->  Y  e.  X )
15 simpl3 996 . . . . . . 7  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  R  e.  RR )  /\  ( Y (
ball `  M ) R )  =/=  (/) )  ->  R  e.  RR )
16 xbln0 20645 . . . . . . . . 9  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  X  /\  R  e.  RR* )  ->  ( ( Y (
ball `  M ) R )  =/=  (/)  <->  0  <  R ) )
172, 16syl3an3 1258 . . . . . . . 8  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  X  /\  R  e.  RR )  ->  ( ( Y ( ball `  M
) R )  =/=  (/) 
<->  0  <  R ) )
1817biimpa 484 . . . . . . 7  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  R  e.  RR )  /\  ( Y (
ball `  M ) R )  =/=  (/) )  -> 
0  <  R )
1915, 18elrpd 11243 . . . . . 6  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  R  e.  RR )  /\  ( Y (
ball `  M ) R )  =/=  (/) )  ->  R  e.  RR+ )
20 blcntr 20644 . . . . . 6  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  X  /\  R  e.  RR+ )  ->  Y  e.  ( Y ( ball `  M
) R ) )
2113, 14, 19, 20syl3anc 1223 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  R  e.  RR )  /\  ( Y (
ball `  M ) R )  =/=  (/) )  ->  Y  e.  ( Y
( ball `  M ) R ) )
2214, 21elind 3681 . . . . . . 7  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  R  e.  RR )  /\  ( Y (
ball `  M ) R )  =/=  (/) )  ->  Y  e.  ( X  i^i  ( Y ( ball `  M ) R ) ) )
2315rexrd 9632 . . . . . . 7  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  R  e.  RR )  /\  ( Y (
ball `  M ) R )  =/=  (/) )  ->  R  e.  RR* )
24 eqid 2460 . . . . . . . 8  |-  ( M  |`  ( ( Y (
ball `  M ) R )  X.  ( Y ( ball `  M
) R ) ) )  =  ( M  |`  ( ( Y (
ball `  M ) R )  X.  ( Y ( ball `  M
) R ) ) )
2524blres 20662 . . . . . . 7  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  ( X  i^i  ( Y ( ball `  M
) R ) )  /\  R  e.  RR* )  ->  ( Y (
ball `  ( M  |`  ( ( Y (
ball `  M ) R )  X.  ( Y ( ball `  M
) R ) ) ) ) R )  =  ( ( Y ( ball `  M
) R )  i^i  ( Y ( ball `  M ) R ) ) )
2613, 22, 23, 25syl3anc 1223 . . . . . 6  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  R  e.  RR )  /\  ( Y (
ball `  M ) R )  =/=  (/) )  -> 
( Y ( ball `  ( M  |`  (
( Y ( ball `  M ) R )  X.  ( Y (
ball `  M ) R ) ) ) ) R )  =  ( ( Y (
ball `  M ) R )  i^i  ( Y ( ball `  M
) R ) ) )
27 inidm 3700 . . . . . 6  |-  ( ( Y ( ball `  M
) R )  i^i  ( Y ( ball `  M ) R ) )  =  ( Y ( ball `  M
) R )
2826, 27syl6req 2518 . . . . 5  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  R  e.  RR )  /\  ( Y (
ball `  M ) R )  =/=  (/) )  -> 
( Y ( ball `  M ) R )  =  ( Y (
ball `  ( M  |`  ( ( Y (
ball `  M ) R )  X.  ( Y ( ball `  M
) R ) ) ) ) R ) )
29 rspceov 6312 . . . . 5  |-  ( ( Y  e.  ( Y ( ball `  M
) R )  /\  R  e.  RR+  /\  ( Y ( ball `  M
) R )  =  ( Y ( ball `  ( M  |`  (
( Y ( ball `  M ) R )  X.  ( Y (
ball `  M ) R ) ) ) ) R ) )  ->  E. x  e.  ( Y ( ball `  M
) R ) E. r  e.  RR+  ( Y ( ball `  M
) R )  =  ( x ( ball `  ( M  |`  (
( Y ( ball `  M ) R )  X.  ( Y (
ball `  M ) R ) ) ) ) r ) )
3021, 19, 28, 29syl3anc 1223 . . . 4  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  R  e.  RR )  /\  ( Y (
ball `  M ) R )  =/=  (/) )  ->  E. x  e.  ( Y ( ball `  M
) R ) E. r  e.  RR+  ( Y ( ball `  M
) R )  =  ( x ( ball `  ( M  |`  (
( Y ( ball `  M ) R )  X.  ( Y (
ball `  M ) R ) ) ) ) r ) )
31 isbnd2 29869 . . . 4  |-  ( ( ( M  |`  (
( Y ( ball `  M ) R )  X.  ( Y (
ball `  M ) R ) ) )  e.  ( Bnd `  ( Y ( ball `  M
) R ) )  /\  ( Y (
ball `  M ) R )  =/=  (/) )  <->  ( ( M  |`  ( ( Y ( ball `  M
) R )  X.  ( Y ( ball `  M ) R ) ) )  e.  ( *Met `  ( Y ( ball `  M
) R ) )  /\  E. x  e.  ( Y ( ball `  M ) R ) E. r  e.  RR+  ( Y ( ball `  M
) R )  =  ( x ( ball `  ( M  |`  (
( Y ( ball `  M ) R )  X.  ( Y (
ball `  M ) R ) ) ) ) r ) ) )
3212, 30, 31sylanbrc 664 . . 3  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  R  e.  RR )  /\  ( Y (
ball `  M ) R )  =/=  (/) )  -> 
( ( M  |`  ( ( Y (
ball `  M ) R )  X.  ( Y ( ball `  M
) R ) ) )  e.  ( Bnd `  ( Y ( ball `  M ) R ) )  /\  ( Y ( ball `  M
) R )  =/=  (/) ) )
3332simpld 459 . 2  |-  ( ( ( M  e.  ( *Met `  X
)  /\  Y  e.  X  /\  R  e.  RR )  /\  ( Y (
ball `  M ) R )  =/=  (/) )  -> 
( M  |`  (
( Y ( ball `  M ) R )  X.  ( Y (
ball `  M ) R ) ) )  e.  ( Bnd `  ( Y ( ball `  M
) R ) ) )
3411, 33pm2.61dane 2778 1  |-  ( ( M  e.  ( *Met `  X )  /\  Y  e.  X  /\  R  e.  RR )  ->  ( M  |`  ( ( Y (
ball `  M ) R )  X.  ( Y ( ball `  M
) R ) ) )  e.  ( Bnd `  ( Y ( ball `  M ) R ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2655   A.wral 2807   E.wrex 2808    i^i cin 3468    C_ wss 3469   (/)c0 3778   class class class wbr 4440    X. cxp 4990    |` cres 4994   ` cfv 5579  (class class class)co 6275   RRcr 9480   0cc0 9481   RR*cxr 9616    < clt 9617   RR+crp 11209   *Metcxmt 18167   ballcbl 18169   Bndcbnd 29853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-po 4793  df-so 4794  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775  df-er 7301  df-ec 7303  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-2 10583  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-bnd 29865
This theorem is referenced by:  ssbnd  29874  prdsbnd2  29881
  Copyright terms: Public domain W3C validator