Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagn0 Structured version   Visualization version   Unicode version

Theorem bj-tagn0 31617
Description: The tagging of a class is nonempty. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-tagn0  |- tag  A  =/=  (/)

Proof of Theorem bj-tagn0
StepHypRef Expression
1 bj-0eltag 31616 . 2  |-  (/)  e. tag  A
21ne0ii 3749 1  |- tag  A  =/=  (/)
Colors of variables: wff setvar class
Syntax hints:    =/= wne 2632   (/)c0 3742  tag bj-ctag 31612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-nul 4547
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-v 3058  df-dif 3418  df-un 3420  df-nul 3743  df-sn 3980  df-bj-tag 31613
This theorem is referenced by:  bj-1upln0  31647  bj-2upln1upl  31662
  Copyright terms: Public domain W3C validator