Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-spnfw Structured version   Visualization version   Unicode version

Theorem bj-spnfw 31334
Description: Theorem close to a closed form of spnfw 1852. (Contributed by BJ, 12-May-2019.)
Assertion
Ref Expression
bj-spnfw  |-  ( ( E. x ph  ->  ps )  ->  ( A. x ph  ->  ps )
)

Proof of Theorem bj-spnfw
StepHypRef Expression
1 19.2 1817 . 2  |-  ( A. x ph  ->  E. x ph )
21imim1i 59 1  |-  ( ( E. x ph  ->  ps )  ->  ( A. x ph  ->  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1450   E.wex 1671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-6 1813
This theorem depends on definitions:  df-bi 190  df-ex 1672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator