Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-spimtv Structured version   Unicode version

Theorem bj-spimtv 30842
Description: Version of spimt 2032 with a dv condition, which does not require ax-13 2026. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-spimtv  |-  ( ( F/ x ps  /\  A. x ( x  =  y  ->  ( ph  ->  ps ) ) )  ->  ( A. x ph  ->  ps ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem bj-spimtv
StepHypRef Expression
1 ax6ev 1773 . . . 4  |-  E. x  x  =  y
2 exim 1675 . . . 4  |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  -> 
( E. x  x  =  y  ->  E. x
( ph  ->  ps )
) )
31, 2mpi 20 . . 3  |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  ->  E. x ( ph  ->  ps ) )
4 19.35 1708 . . 3  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  E. x ps )
)
53, 4sylib 196 . 2  |-  ( A. x ( x  =  y  ->  ( ph  ->  ps ) )  -> 
( A. x ph  ->  E. x ps )
)
6 19.9t 1915 . . 3  |-  ( F/ x ps  ->  ( E. x ps  <->  ps )
)
76biimpd 207 . 2  |-  ( F/ x ps  ->  ( E. x ps  ->  ps ) )
85, 7sylan9r 656 1  |-  ( ( F/ x ps  /\  A. x ( x  =  y  ->  ( ph  ->  ps ) ) )  ->  ( A. x ph  ->  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367   A.wal 1403   E.wex 1633   F/wnf 1637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-12 1878
This theorem depends on definitions:  df-bi 185  df-an 369  df-ex 1634  df-nf 1638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator