Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rexcom4b Structured version   Visualization version   Unicode version

Theorem bj-rexcom4b 31481
 Description: Remove from rexcom4b 3069 dependency on ax-ext 2431 and ax-13 2091 (and on df-or 372, df-cleq 2444, df-nfc 2581, df-v 3047). The hypothesis uses instead of (see bj-isseti 31473 for the motivation). Use bj-rexcom4bv 31480 instead when sufficient (in particular when is substituted for ). (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-rexcom4b.1
Assertion
Ref Expression
bj-rexcom4b
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   (,)

Proof of Theorem bj-rexcom4b
StepHypRef Expression
1 bj-rexcom4a 31479 . 2
2 bj-rexcom4b.1 . . . . 5
32bj-isseti 31473 . . . 4
43biantru 508 . . 3
54rexbii 2889 . 2
61, 5bitr4i 256 1
 Colors of variables: wff setvar class Syntax hints:   wb 188   wa 371   wceq 1444  wex 1663   wcel 1887  wrex 2738 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-11 1920  ax-12 1933 This theorem depends on definitions:  df-bi 189  df-an 373  df-ex 1664  df-sb 1798  df-clab 2438  df-clel 2447  df-rex 2743 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator