Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rexcom4 Structured version   Visualization version   Unicode version

Theorem bj-rexcom4 31546
 Description: Remove from rexcom4 3053 dependency on ax-ext 2451 and ax-13 2104 (and on df-or 377, df-tru 1455, df-sb 1806, df-clab 2458, df-cleq 2464, df-clel 2467, df-nfc 2601, df-v 3033). This proof uses only df-rex 2762 on top of first-order logic. (Contributed by BJ, 13-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-rexcom4
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   ()

Proof of Theorem bj-rexcom4
StepHypRef Expression
1 df-rex 2762 . 2
2 19.42v 1842 . . . . 5
32bicomi 207 . . . 4
43exbii 1726 . . 3
5 excom 1944 . . . 4
6 df-rex 2762 . . . . . 6
76bicomi 207 . . . . 5
87exbii 1726 . . . 4
95, 8bitri 257 . . 3
104, 9bitri 257 . 2
111, 10bitri 257 1
 Colors of variables: wff setvar class Syntax hints:   wb 189   wa 376  wex 1671   wcel 1904  wrex 2757 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-11 1937 This theorem depends on definitions:  df-bi 190  df-an 378  df-ex 1672  df-rex 2762 This theorem is referenced by:  bj-rexcom4a  31547
 Copyright terms: Public domain W3C validator