Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rabtr Structured version   Unicode version

Theorem bj-rabtr 34898
Description: Restricted class abstraction with true formula. (Contributed by BJ, 22-Apr-2019.)
Assertion
Ref Expression
bj-rabtr  |-  { x  e.  A  | T.  }  =  A
Distinct variable group:    x, A

Proof of Theorem bj-rabtr
StepHypRef Expression
1 ssrab2 3571 . 2  |-  { x  e.  A  | T.  }  C_  A
2 ssid 3508 . . 3  |-  A  C_  A
3 tru 1402 . . . 4  |- T.
43rgenw 2815 . . 3  |-  A. x  e.  A T.
5 ssrab 3564 . . 3  |-  ( A 
C_  { x  e.  A  | T.  }  <->  ( A  C_  A  /\  A. x  e.  A T.  ) )
62, 4, 5mpbir2an 918 . 2  |-  A  C_  { x  e.  A  | T.  }
71, 6eqssi 3505 1  |-  { x  e.  A  | T.  }  =  A
Colors of variables: wff setvar class
Syntax hints:    = wceq 1398   T. wtru 1399   A.wral 2804   {crab 2808    C_ wss 3461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2809  df-rab 2813  df-in 3468  df-ss 3475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator