Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pinftynminfty Structured version   Unicode version

Theorem bj-pinftynminfty 34103
Description: The extended complex numbers pinfty and minfty are different. (Contributed by BJ, 27-Jun-2019.)
Assertion
Ref Expression
bj-pinftynminfty  |- pinfty  =/= minfty

Proof of Theorem bj-pinftynminfty
StepHypRef Expression
1 pire 22718 . . . . . . 7  |-  pi  e.  RR
2 pipos 22720 . . . . . . 7  |-  0  <  pi
31, 2gt0ne0ii 10101 . . . . . 6  |-  pi  =/=  0
43nesymi 2740 . . . . 5  |-  -.  0  =  pi
51renegcli 9892 . . . . . . . 8  |-  -u pi  e.  RR
65rexri 9658 . . . . . . 7  |-  -u pi  e.  RR*
7 0red 9609 . . . . . . . 8  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR )  ->  0  e.  RR )
8 lt0neg2 10071 . . . . . . . . . . 11  |-  ( pi  e.  RR  ->  (
0  <  pi  <->  -u pi  <  0 ) )
91, 8ax-mp 5 . . . . . . . . . 10  |-  ( 0  <  pi  <->  -u pi  <  0 )
102, 9mpbi 208 . . . . . . . . 9  |-  -u pi  <  0
1110a1i 11 . . . . . . . 8  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR )  ->  -u pi  <  0
)
12 0re 9608 . . . . . . . . . 10  |-  0  e.  RR
1312, 1, 2ltleii 9719 . . . . . . . . 9  |-  0  <_  pi
1413a1i 11 . . . . . . . 8  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR )  ->  0  <_  pi )
15 elioc2 11599 . . . . . . . 8  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR )  ->  ( 0  e.  ( -u pi (,] pi )  <->  ( 0  e.  RR  /\  -u pi  <  0  /\  0  <_  pi ) ) )
167, 11, 14, 15mpbir3and 1179 . . . . . . 7  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR )  ->  0  e.  (
-u pi (,] pi ) )
176, 1, 16mp2an 672 . . . . . 6  |-  0  e.  ( -u pi (,] pi )
18 simpr 461 . . . . . . . 8  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR )  ->  pi  e.  RR )
195, 12, 1lttri 9722 . . . . . . . . . 10  |-  ( (
-u pi  <  0  /\  0  <  pi )  ->  -u pi  <  pi )
2010, 2, 19mp2an 672 . . . . . . . . 9  |-  -u pi  <  pi
2120a1i 11 . . . . . . . 8  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR )  ->  -u pi  <  pi )
221leidi 10099 . . . . . . . . 9  |-  pi  <_  pi
2322a1i 11 . . . . . . . 8  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR )  ->  pi  <_  pi )
24 elioc2 11599 . . . . . . . 8  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR )  ->  ( pi  e.  ( -u pi (,] pi ) 
<->  ( pi  e.  RR  /\  -u pi  <  pi  /\  pi  <_  pi ) ) )
2518, 21, 23, 24mpbir3and 1179 . . . . . . 7  |-  ( (
-u pi  e.  RR*  /\  pi  e.  RR )  ->  pi  e.  (
-u pi (,] pi ) )
266, 1, 25mp2an 672 . . . . . 6  |-  pi  e.  ( -u pi (,] pi )
27 bj-inftyexpiinj 34085 . . . . . 6  |-  ( ( 0  e.  ( -u pi (,] pi )  /\  pi  e.  ( -u pi (,] pi ) )  -> 
( 0  =  pi  <->  (inftyexpi  `  0 )  =  (inftyexpi  `  pi ) ) )
2817, 26, 27mp2an 672 . . . . 5  |-  ( 0  =  pi  <->  (inftyexpi  `  0
)  =  (inftyexpi  `  pi ) )
294, 28mtbi 298 . . . 4  |-  -.  (inftyexpi  `  0 )  =  (inftyexpi  `  pi )
30 df-bj-minfty 34100 . . . . 5  |- minfty  =  (inftyexpi  `  pi )
3130eqeq2i 2485 . . . 4  |-  ( (inftyexpi  `  0 )  = minfty  <->  (inftyexpi  `  0
)  =  (inftyexpi  `  pi ) )
3229, 31mtbir 299 . . 3  |-  -.  (inftyexpi  `  0 )  = minfty
33 df-bj-pinfty 34096 . . . 4  |- pinfty  =  (inftyexpi  `  0 )
3433eqeq1i 2474 . . 3  |-  (pinfty  = minfty  <->  (inftyexpi  `  0 )  = minfty )
3532, 34mtbir 299 . 2  |-  -. pinfty  = minfty
3635neir 2667 1  |- pinfty  =/= minfty
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   RRcr 9503   0cc0 9504   RR*cxr 9639    < clt 9640    <_ cle 9641   -ucneg 9818   (,]cioc 11542   picpi 13681  inftyexpi cinftyexpi 34082  pinftycpinfty 34095  minftycminfty 34099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-ixp 7482  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fsupp 7842  df-fi 7883  df-sup 7913  df-oi 7947  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-ioo 11545  df-ioc 11546  df-ico 11547  df-icc 11548  df-fz 11685  df-fzo 11805  df-fl 11909  df-seq 12088  df-exp 12147  df-fac 12334  df-bc 12361  df-hash 12386  df-shft 12880  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-limsup 13274  df-clim 13291  df-rlim 13292  df-sum 13489  df-ef 13682  df-sin 13684  df-cos 13685  df-pi 13687  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-mulr 14586  df-starv 14587  df-sca 14588  df-vsca 14589  df-ip 14590  df-tset 14591  df-ple 14592  df-ds 14594  df-unif 14595  df-hom 14596  df-cco 14597  df-rest 14695  df-topn 14696  df-0g 14714  df-gsum 14715  df-topgen 14716  df-pt 14717  df-prds 14720  df-xrs 14774  df-qtop 14779  df-imas 14780  df-xps 14782  df-mre 14858  df-mrc 14859  df-acs 14861  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15840  df-mulg 15932  df-cntz 16227  df-cmn 16673  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-fbas 18286  df-fg 18287  df-cnfld 18291  df-top 19268  df-bases 19270  df-topon 19271  df-topsp 19272  df-cld 19388  df-ntr 19389  df-cls 19390  df-nei 19467  df-lp 19505  df-perf 19506  df-cn 19596  df-cnp 19597  df-haus 19684  df-tx 19931  df-hmeo 20124  df-fil 20215  df-fm 20307  df-flim 20308  df-flf 20309  df-xms 20691  df-ms 20692  df-tms 20693  df-cncf 21250  df-limc 22138  df-dv 22139  df-bj-inftyexpi 34083  df-bj-pinfty 34096  df-bj-minfty 34100
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator