Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfsab1 Structured version   Visualization version   Unicode version

Theorem bj-nfsab1 31453
Description: Remove dependency on ax-13 2104 from nfsab1 2461. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nfsab1  |-  F/ x  y  e.  { x  |  ph }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem bj-nfsab1
StepHypRef Expression
1 bj-hbab1 31452 . 2  |-  ( y  e.  { x  | 
ph }  ->  A. x  y  e.  { x  |  ph } )
21nfi 1682 1  |-  F/ x  y  e.  { x  |  ph }
Colors of variables: wff setvar class
Syntax hints:   F/wnf 1675    e. wcel 1904   {cab 2457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-12 1950
This theorem depends on definitions:  df-bi 190  df-an 378  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458
This theorem is referenced by:  bj-abbi  31456  bj-nfab1  31466
  Copyright terms: Public domain W3C validator