Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfs1v Structured version   Visualization version   Unicode version

Theorem bj-nfs1v 31449
Description: Remove dependency on ax-13 2104 from nfs1v 2286. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nfs1v  |-  F/ x [ y  /  x ] ph
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem bj-nfs1v
StepHypRef Expression
1 bj-hbs1 31448 . 2  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
21nfi 1682 1  |-  F/ x [ y  /  x ] ph
Colors of variables: wff setvar class
Syntax hints:   F/wnf 1675   [wsb 1805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-12 1950
This theorem depends on definitions:  df-bi 190  df-an 378  df-ex 1672  df-nf 1676  df-sb 1806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator