Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfs1t Structured version   Visualization version   Unicode version

Theorem bj-nfs1t 31308
Description: A theorem close to a closed form of nfs1 2193. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-nfs1t  |-  ( A. x ( ph  ->  A. y ph )  ->  F/ x [ y  /  x ] ph )

Proof of Theorem bj-nfs1t
StepHypRef Expression
1 bj-hbsb3t 31306 . . 3  |-  ( A. x ( ph  ->  A. y ph )  -> 
( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
21axc4i 1979 . 2  |-  ( A. x ( ph  ->  A. y ph )  ->  A. x ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
3 df-nf 1667 . 2  |-  ( F/ x [ y  /  x ] ph  <->  A. x
( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
42, 3sylibr 216 1  |-  ( A. x ( ph  ->  A. y ph )  ->  F/ x [ y  /  x ] ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1441   F/wnf 1666   [wsb 1796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-12 1932  ax-13 2090
This theorem depends on definitions:  df-bi 189  df-an 373  df-ex 1663  df-nf 1667  df-sb 1797
This theorem is referenced by:  bj-nfs1t2  31309
  Copyright terms: Public domain W3C validator