Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfcf Structured version   Visualization version   Unicode version

Theorem bj-nfcf 31539
Description: Version of df-nfc 2583 with a dv condition replaced with a non-freeness hypothesis. (Contributed by BJ, 2-May-2019.)
Hypothesis
Ref Expression
bj-nfcf.nf  |-  F/_ y A
Assertion
Ref Expression
bj-nfcf  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem bj-nfcf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2583 . 2  |-  ( F/_ x A  <->  A. z F/ x  z  e.  A )
2 bj-nfcf.nf . . . . . 6  |-  F/_ y A
32nfcri 2588 . . . . 5  |-  F/ y  z  e.  A
43nfnf 2034 . . . 4  |-  F/ y F/ x  z  e.  A
54sb8 2255 . . 3  |-  ( A. z F/ x  z  e.  A  <->  A. y [ y  /  z ] F/ x  z  e.  A
)
6 bj-sbnf 31453 . . . . 5  |-  ( [ y  /  z ] F/ x  z  e.  A  <->  F/ x [ y  /  z ] z  e.  A )
7 clelsb3 2559 . . . . . 6  |-  ( [ y  /  z ] z  e.  A  <->  y  e.  A )
87nfbii 1697 . . . . 5  |-  ( F/ x [ y  / 
z ] z  e.  A  <->  F/ x  y  e.  A )
96, 8bitri 253 . . . 4  |-  ( [ y  /  z ] F/ x  z  e.  A  <->  F/ x  y  e.  A )
109albii 1693 . . 3  |-  ( A. y [ y  /  z ] F/ x  z  e.  A  <->  A. y F/ x  y  e.  A )
115, 10bitri 253 . 2  |-  ( A. z F/ x  z  e.  A  <->  A. y F/ x  y  e.  A )
121, 11bitri 253 1  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 188   A.wal 1444   F/wnf 1669   [wsb 1799    e. wcel 1889   F/_wnfc 2581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-ex 1666  df-nf 1670  df-sb 1800  df-cleq 2446  df-clel 2449  df-nfc 2583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator