Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-issetwt Structured version   Unicode version

Theorem bj-issetwt 30999
 Description: Closed form of bj-issetw 31000. (Contributed by BJ, 29-Apr-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-issetwt
Distinct variable group:   ,
Allowed substitution hints:   (,)   ()

Proof of Theorem bj-issetwt
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-clel 2397 . . 3
21a1i 11 . 2
3 bj-vexwvt 30996 . . . . 5
43biantrud 505 . . . 4
54bicomd 201 . . 3
65exbidv 1735 . 2
7 bj-denotes 30998 . . 3
87a1i 11 . 2
92, 6, 83bitrd 279 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 367  wal 1403   wceq 1405  wex 1633   wcel 1842  cab 2387 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-12 1878 This theorem depends on definitions:  df-bi 185  df-an 369  df-ex 1634  df-sb 1764  df-clab 2388  df-clel 2397 This theorem is referenced by:  bj-issetw  31000
 Copyright terms: Public domain W3C validator