Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-hbsb2v Structured version   Unicode version

Theorem bj-hbsb2v 31320
Description: Version of hbsb2 2150 with a dv condition, which does not require ax-13 2052. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-hbsb2v  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem bj-hbsb2v
StepHypRef Expression
1 bj-sb4v 31318 . 2  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
) )
2 bj-sb2v 31314 . . 3  |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )
32axc4i 1952 . 2  |-  ( A. x ( x  =  y  ->  ph )  ->  A. x [ y  /  x ] ph )
41, 3syl6 34 1  |-  ( -. 
A. x  x  =  y  ->  ( [
y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1435   [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-10 1886  ax-12 1904
This theorem depends on definitions:  df-bi 188  df-an 372  df-ex 1660  df-nf 1664  df-sb 1787
This theorem is referenced by:  bj-nfsb2v  31321  bj-hbs1  31333
  Copyright terms: Public domain W3C validator